--- license: cc-by-nc-4.0 pipeline_tag: text-to-audio library_name: stable-audio-tools --- # AudioX ## 🎧 AudioX: Diffusion Transformer for Anything-to-Audio Generation [TL;DR]: AudioX is a unified Diffusion Transformer model for Anything-to-Audio and Music Generation, capable of generating high-quality general audio and music, offering flexible natural language control, and seamlessly processing various modalities including text, video, image, music, and audio. ### Links - **[Paper](https://arxiv.org/abs/2503.10522)**: Explore the research behind AudioX. - **[Project](https://zeyuet.github.io/AudioX/)**: Visit the official project page for more information and updates. - **[Code](https://github.com/ZeyueT/AudioX)**: Implementation of AudioX. ## Clone the repository ```bash GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/HKUSTAudio/AudioX cd AudioX conda create -n AudioX python=3.8.20 conda activate AudioX pip install git+https://github.com/ZeyueT/AudioX.git conda install -c conda-forge ffmpeg libsndfile ``` ## Usage ```py import torch import torchaudio from einops import rearrange from stable_audio_tools import get_pretrained_model from stable_audio_tools.inference.generation import generate_diffusion_cond from stable_audio_tools.data.utils import read_video, merge_video_audio from stable_audio_tools.data.utils import load_and_process_audio import os device = "cuda" if torch.cuda.is_available() else "cpu" # Download model model, model_config = get_pretrained_model("HKUSTAudio/AudioX") sample_rate = model_config["sample_rate"] sample_size = model_config["sample_size"] target_fps = model_config["video_fps"] seconds_start = 0 seconds_total = 10 model = model.to(device) # for video-to-music generation video_path = "video.mp4" text_prompt = "Generate music for the video" audio_path = None video_tensor = read_video(video_path, seek_time=0, duration=seconds_total, target_fps=target_fps) audio_tensor = load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total) conditioning = [{ "video_prompt": [video_tensor.unsqueeze(0)], "text_prompt": text_prompt, "audio_prompt": audio_tensor.unsqueeze(0), "seconds_start": seconds_start, "seconds_total": seconds_total }] # Generate stereo audio output = generate_diffusion_cond( model, steps=250, cfg_scale=7, conditioning=conditioning, sample_size=sample_size, sigma_min=0.3, sigma_max=500, sampler_type="dpmpp-3m-sde", device=device ) # Rearrange audio batch to a single sequence output = rearrange(output, "b d n -> d (b n)") # Peak normalize, clip, convert to int16, and save to file output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() torchaudio.save("output.wav", output, sample_rate) if video_path is not None and os.path.exists(video_path): merge_video_audio(video_path, "output.wav", "output.mp4", 0, seconds_total) ``` ## Citation If you find our work useful, please consider citing: ``` @article{tian2025audiox, title={AudioX: Diffusion Transformer for Anything-to-Audio Generation}, author={Tian, Zeyue and Jin, Yizhu and Liu, Zhaoyang and Yuan, Ruibin and Tan, Xu and Chen, Qifeng and Xue, Wei and Guo, Yike}, journal={arXiv preprint arXiv:2503.10522}, year={2025} } ``` ## License Please follow [CC-BY-NC](./LICENSE).