--- library_name: peft license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer model-index: - name: whisper-turbo-tr_All_datasets_finetune results: [] --- # whisper-turbo-tr_All_datasets_finetune This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1651 | 0.4869 | 1500 | 0.1745 | | 0.158 | 0.9737 | 3000 | 0.1590 | | 0.1391 | 1.4606 | 4500 | 0.1540 | | 0.1509 | 1.9474 | 6000 | 0.1516 | | 0.1387 | 2.4343 | 7500 | 0.1500 | | 0.1428 | 2.9211 | 9000 | 0.1497 | ### Framework versions - PEFT 0.15.1 - Transformers 4.48.0 - Pytorch 2.5.1 - Datasets 3.0.0 - Tokenizers 0.21.1