Upload files with `vila-upload`.
Browse filesUpload __init__.py
Upload utils.py
Upload config.json
Upload README.md
Upload model_utils_packing.py
Upload auto_processor.py
Upload modeling_vila.py
Upload loss.py
Upload distributed.py
Upload llm/model.safetensors
Upload llm/config.json
Upload mm_projector/model.safetensors
Upload mm_projector/config.json
Upload vision_tower/model.safetensors
Upload vision_tower/config.json
- README.md +60 -10
- __init__.py +0 -0
- auto_processor.py +64 -7
- config.json +22 -17
- distributed.py +73 -0
- llm/config.json +4 -4
- llm/model.safetensors +2 -2
- loss.py +48 -0
- mm_projector/config.json +2 -2
- mm_projector/model.safetensors +2 -2
- model_utils_packing.py +35 -0
- modeling_vila.py +107 -30
- utils.py +1 -1
- vision_tower/config.json +2 -2
- vision_tower/model.safetensors +2 -2
README.md
CHANGED
@@ -52,34 +52,36 @@ print(colored(response, "cyan", attrs=["bold"]))
|
|
52 |
|
53 |
we also support `AutoProcessor` class to ease data preparation for training and finetuning.
|
54 |
|
|
|
|
|
|
|
55 |
```python
|
56 |
from transformers import AutoProcessor, AutoModel
|
57 |
|
58 |
model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
|
59 |
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
|
|
|
60 |
|
61 |
-
gpt_conv = [
|
62 |
"role": "user",
|
63 |
"content": [
|
64 |
{"type": "image", "path": "demo_images/demo_img_1.png"},
|
65 |
{"type": "text", "text": "Describe this image."}
|
66 |
]
|
67 |
}]
|
|
|
|
|
68 |
|
69 |
-
inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt")
|
70 |
-
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
|
71 |
output_ids = model.generate(
|
72 |
input_ids=inputs.input_ids,
|
73 |
-
media=
|
74 |
-
|
75 |
-
},
|
76 |
-
media_config={
|
77 |
-
"image": {}
|
78 |
-
},
|
79 |
generation_config=model.generation_config,
|
80 |
max_new_tokens=256,
|
81 |
)
|
82 |
-
print(processor.tokenizer.
|
83 |
|
84 |
##### the above code is equivalent to
|
85 |
# response = model.generate_content([
|
@@ -89,6 +91,54 @@ print(processor.tokenizer.decode(output_ids[0], skip_special_tokens=True))
|
|
89 |
# print(colored(response, "cyan", attrs=["bold"]))
|
90 |
```
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
## Model Convert
|
93 |
|
94 |
The follwing code converts a convetional NVILA model to a HF compatible model.
|
|
|
52 |
|
53 |
we also support `AutoProcessor` class to ease data preparation for training and finetuning.
|
54 |
|
55 |
+
|
56 |
+
### single call
|
57 |
+
|
58 |
```python
|
59 |
from transformers import AutoProcessor, AutoModel
|
60 |
|
61 |
model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
|
62 |
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
63 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
|
64 |
+
# important: set model to eval mode, otherwise the model will be in training mode and will pad to right.
|
65 |
+
model.eval()
|
66 |
|
67 |
+
gpt_conv = [{
|
68 |
"role": "user",
|
69 |
"content": [
|
70 |
{"type": "image", "path": "demo_images/demo_img_1.png"},
|
71 |
{"type": "text", "text": "Describe this image."}
|
72 |
]
|
73 |
}]
|
74 |
+
text = processor.apply_chat_template(gpt_conv, tokenize=False, add_generation_prompt=True)
|
75 |
+
inputs = processor([text])
|
76 |
|
|
|
|
|
77 |
output_ids = model.generate(
|
78 |
input_ids=inputs.input_ids,
|
79 |
+
media=inputs.media,
|
80 |
+
media_config=inputs.media_config,
|
|
|
|
|
|
|
|
|
81 |
generation_config=model.generation_config,
|
82 |
max_new_tokens=256,
|
83 |
)
|
84 |
+
print(processor.tokenizer.batch_decode(output_ids, skip_special_tokens=True))
|
85 |
|
86 |
##### the above code is equivalent to
|
87 |
# response = model.generate_content([
|
|
|
91 |
# print(colored(response, "cyan", attrs=["bold"]))
|
92 |
```
|
93 |
|
94 |
+
### batch call
|
95 |
+
|
96 |
+
```python
|
97 |
+
from transformers import AutoProcessor, AutoModel
|
98 |
+
|
99 |
+
model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
|
100 |
+
model_path = "./NVILA-Lite-2B-hf-preview"
|
101 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
102 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
|
103 |
+
# important: set model to eval mode, otherwise the model will be in training mode and will pad to right.
|
104 |
+
model.eval()
|
105 |
+
|
106 |
+
gpt_conv1 = [{
|
107 |
+
"role": "user",
|
108 |
+
"content": [
|
109 |
+
{"type": "image", "path": "demo_images/demo_img_1.png"},
|
110 |
+
{"type": "text", "text": "Describe this image."}
|
111 |
+
]
|
112 |
+
}]
|
113 |
+
gpt_conv2 = [{
|
114 |
+
"role": "user",
|
115 |
+
"content": [
|
116 |
+
{"type": "image", "path": "demo_images/demo_img_2.png"},
|
117 |
+
{"type": "text", "text": "Describe this image for me. Provide a detailed description of the image."}
|
118 |
+
]
|
119 |
+
}]
|
120 |
+
|
121 |
+
messages = [gpt_conv1, gpt_conv2]
|
122 |
+
texts = [
|
123 |
+
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
|
124 |
+
for msg in messages
|
125 |
+
]
|
126 |
+
inputs = processor(texts)
|
127 |
+
|
128 |
+
output_ids = model.generate(
|
129 |
+
input_ids=inputs.input_ids,
|
130 |
+
media=inputs.media,
|
131 |
+
media_config=inputs.media_config,
|
132 |
+
generation_config=model.generation_config,
|
133 |
+
max_new_tokens=256,
|
134 |
+
)
|
135 |
+
output_texts = processor.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
136 |
+
print(output_texts[0])
|
137 |
+
print("---" * 40)
|
138 |
+
print(output_texts[1])
|
139 |
+
```
|
140 |
+
|
141 |
+
|
142 |
## Model Convert
|
143 |
|
144 |
The follwing code converts a convetional NVILA model to a HF compatible model.
|
__init__.py
ADDED
File without changes
|
auto_processor.py
CHANGED
@@ -1,8 +1,11 @@
|
|
|
|
1 |
import os
|
2 |
import os.path as osp
|
|
|
3 |
from collections import defaultdict
|
4 |
from typing import List, Union
|
5 |
|
|
|
6 |
from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoProcessor, AutoTokenizer
|
7 |
from transformers.feature_extraction_utils import BatchFeature
|
8 |
from transformers.image_utils import ImageInput, VideoInput
|
@@ -16,6 +19,26 @@ from .mm_utils import process_image, process_images
|
|
16 |
from .tokenizer_utils import tokenize_conversation
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
class VILAProcessorKwargs(ProcessingKwargs, total=False):
|
20 |
_defaults = {
|
21 |
"text_kwargs": {
|
@@ -40,6 +63,7 @@ class VILAProcessor(ProcessorMixin):
|
|
40 |
self.config = config
|
41 |
self.image_processor = image_processor
|
42 |
self.tokenizer = tokenizer
|
|
|
43 |
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
44 |
|
45 |
@classmethod
|
@@ -48,7 +72,7 @@ class VILAProcessor(ProcessorMixin):
|
|
48 |
pretrained_model_name_or_path = pretrained_model_name_or_path
|
49 |
else:
|
50 |
print(f"pretrained_model_name_or_path {pretrained_model_name_or_path} is not a directory, downloading")
|
51 |
-
from huggingface_hub import
|
52 |
|
53 |
pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path)
|
54 |
|
@@ -59,7 +83,6 @@ class VILAProcessor(ProcessorMixin):
|
|
59 |
osp.join(pretrained_model_name_or_path, "llm"), trust_remote_code=True
|
60 |
)
|
61 |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
|
62 |
-
|
63 |
return cls(image_processor=image_processor, tokenizer=tokenizer, config=config)
|
64 |
|
65 |
def __repr__(self):
|
@@ -74,9 +97,45 @@ class VILAProcessor(ProcessorMixin):
|
|
74 |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
75 |
videos: VideoInput = None,
|
76 |
**kwargs: Unpack[VILAProcessorKwargs],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
) -> BatchFeature:
|
78 |
# TODO: should be merged with llava_arch.py/generate_content()
|
79 |
# TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
|
|
|
80 |
media = extract_media(conversation, self.config)
|
81 |
# Process media
|
82 |
media_config = defaultdict(dict)
|
@@ -107,11 +166,9 @@ class VILAProcessor(ProcessorMixin):
|
|
107 |
]
|
108 |
else:
|
109 |
raise ValueError(f"Unsupported media type: {name}")
|
110 |
-
|
111 |
input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)
|
112 |
# Set up the generation config
|
113 |
-
|
114 |
-
return BatchFeature(data={"input_ids": input_ids, **media})
|
115 |
|
116 |
def batch_decode(self, *args, **kwargs):
|
117 |
"""
|
@@ -152,7 +209,6 @@ class VILAProcessor(ProcessorMixin):
|
|
152 |
# inputs = processor(conversation=llavaconv, padding=True, return_tensors="pt")
|
153 |
def apply_chat_template(self, conversation, add_generation_prompt=True, **kwargs):
|
154 |
vila_conv = []
|
155 |
-
|
156 |
for chat in conversation:
|
157 |
vila_chat = {"from": "", "value": []}
|
158 |
if chat["role"] == "user":
|
@@ -172,7 +228,8 @@ class VILAProcessor(ProcessorMixin):
|
|
172 |
vila_chat["value"].append(content["text"])
|
173 |
vila_conv.append(vila_chat)
|
174 |
|
175 |
-
return self(vila_conv)
|
|
|
176 |
|
177 |
|
178 |
if __name__ == "__main__":
|
|
|
1 |
+
import copy
|
2 |
import os
|
3 |
import os.path as osp
|
4 |
+
import warnings
|
5 |
from collections import defaultdict
|
6 |
from typing import List, Union
|
7 |
|
8 |
+
import torch
|
9 |
from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoProcessor, AutoTokenizer
|
10 |
from transformers.feature_extraction_utils import BatchFeature
|
11 |
from transformers.image_utils import ImageInput, VideoInput
|
|
|
19 |
from .tokenizer_utils import tokenize_conversation
|
20 |
|
21 |
|
22 |
+
def vila_pad_fn(input_ids_list, padding_value=0, target_len=None, padding_side="left"):
|
23 |
+
# tensor shape is (batch_size, seq_len)
|
24 |
+
max_len = max([ids.shape[1] for ids in input_ids_list])
|
25 |
+
if target_len is not None:
|
26 |
+
assert target_len >= max_len, "target_len must be greater than or equal to max_len"
|
27 |
+
max_len = target_len
|
28 |
+
|
29 |
+
new_input_ids_list = []
|
30 |
+
for i, input_ids in enumerate(input_ids_list):
|
31 |
+
pad_tensor = torch.ones_like(input_ids) * padding_value
|
32 |
+
curr_len = input_ids.shape[1]
|
33 |
+
pad_tensor = pad_tensor[:, : max_len - curr_len]
|
34 |
+
if padding_side == "right":
|
35 |
+
input_ids = torch.cat((input_ids, pad_tensor), dim=1)
|
36 |
+
else:
|
37 |
+
input_ids = torch.cat((pad_tensor, input_ids), dim=1)
|
38 |
+
new_input_ids_list.append(input_ids)
|
39 |
+
return torch.cat(new_input_ids_list, dim=0)
|
40 |
+
|
41 |
+
|
42 |
class VILAProcessorKwargs(ProcessingKwargs, total=False):
|
43 |
_defaults = {
|
44 |
"text_kwargs": {
|
|
|
63 |
self.config = config
|
64 |
self.image_processor = image_processor
|
65 |
self.tokenizer = tokenizer
|
66 |
+
|
67 |
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
68 |
|
69 |
@classmethod
|
|
|
72 |
pretrained_model_name_or_path = pretrained_model_name_or_path
|
73 |
else:
|
74 |
print(f"pretrained_model_name_or_path {pretrained_model_name_or_path} is not a directory, downloading")
|
75 |
+
from huggingface_hub import snapshot_download
|
76 |
|
77 |
pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path)
|
78 |
|
|
|
83 |
osp.join(pretrained_model_name_or_path, "llm"), trust_remote_code=True
|
84 |
)
|
85 |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
|
|
|
86 |
return cls(image_processor=image_processor, tokenizer=tokenizer, config=config)
|
87 |
|
88 |
def __repr__(self):
|
|
|
97 |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
98 |
videos: VideoInput = None,
|
99 |
**kwargs: Unpack[VILAProcessorKwargs],
|
100 |
+
) -> BatchFeature:
|
101 |
+
if images is not None:
|
102 |
+
warnings.warn("images is not supported in __call__")
|
103 |
+
|
104 |
+
input_ids = []
|
105 |
+
media = defaultdict(list)
|
106 |
+
media_config = defaultdict(dict)
|
107 |
+
for conv in conversation:
|
108 |
+
feat = self.__single_call__(conv, images, text, videos, **kwargs)
|
109 |
+
input_ids.append(feat.input_ids)
|
110 |
+
for name in feat.media:
|
111 |
+
media[name] += feat.media[name]
|
112 |
+
for name in feat.media_config:
|
113 |
+
media_config[name].update(feat.media_config[name])
|
114 |
+
|
115 |
+
return BatchFeature(
|
116 |
+
data={
|
117 |
+
# "input_ids": torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True, padding_value=self.pad_token_id),
|
118 |
+
"input_ids": vila_pad_fn(
|
119 |
+
input_ids,
|
120 |
+
padding_value=self.tokenizer.pad_token_id,
|
121 |
+
padding_side="left",
|
122 |
+
),
|
123 |
+
"media": media,
|
124 |
+
"media_config": media_config,
|
125 |
+
}
|
126 |
+
)
|
127 |
+
|
128 |
+
def __single_call__(
|
129 |
+
self,
|
130 |
+
conversation,
|
131 |
+
images: ImageInput = None,
|
132 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
133 |
+
videos: VideoInput = None,
|
134 |
+
**kwargs: Unpack[VILAProcessorKwargs],
|
135 |
) -> BatchFeature:
|
136 |
# TODO: should be merged with llava_arch.py/generate_content()
|
137 |
# TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
|
138 |
+
conversation = copy.deepcopy(conversation)
|
139 |
media = extract_media(conversation, self.config)
|
140 |
# Process media
|
141 |
media_config = defaultdict(dict)
|
|
|
166 |
]
|
167 |
else:
|
168 |
raise ValueError(f"Unsupported media type: {name}")
|
|
|
169 |
input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)
|
170 |
# Set up the generation config
|
171 |
+
return BatchFeature(data={"input_ids": input_ids, "media": media, "media_config": media_config})
|
|
|
172 |
|
173 |
def batch_decode(self, *args, **kwargs):
|
174 |
"""
|
|
|
209 |
# inputs = processor(conversation=llavaconv, padding=True, return_tensors="pt")
|
210 |
def apply_chat_template(self, conversation, add_generation_prompt=True, **kwargs):
|
211 |
vila_conv = []
|
|
|
212 |
for chat in conversation:
|
213 |
vila_chat = {"from": "", "value": []}
|
214 |
if chat["role"] == "user":
|
|
|
228 |
vila_chat["value"].append(content["text"])
|
229 |
vila_conv.append(vila_chat)
|
230 |
|
231 |
+
# return self(vila_conv)
|
232 |
+
return vila_conv
|
233 |
|
234 |
|
235 |
if __name__ == "__main__":
|
config.json
CHANGED
@@ -1,19 +1,26 @@
|
|
1 |
{
|
2 |
"_attn_implementation_autoset": true,
|
3 |
-
"_name_or_path": "
|
4 |
"architectures": [
|
5 |
"VILAForCasualLM"
|
6 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
"chat_template": null,
|
8 |
"drop_path_rate": 0.0,
|
9 |
"dynamic_s2": false,
|
10 |
"fps": 0.0,
|
11 |
"hidden_size": 1536,
|
12 |
"image_aspect_ratio": "dynamic",
|
|
|
13 |
"interpolate_mode": "linear",
|
14 |
"llm_cfg": {
|
15 |
"_attn_implementation_autoset": false,
|
16 |
-
"_name_or_path": "
|
17 |
"add_cross_attention": false,
|
18 |
"architectures": [
|
19 |
"Qwen2ForCausalLM"
|
@@ -53,7 +60,7 @@
|
|
53 |
"max_position_embeddings": 32768,
|
54 |
"max_window_layers": 28,
|
55 |
"min_length": 0,
|
56 |
-
"model_max_length":
|
57 |
"model_type": "qwen2",
|
58 |
"no_repeat_ngram_size": 0,
|
59 |
"num_attention_heads": 12,
|
@@ -89,18 +96,20 @@
|
|
89 |
"tokenizer_padding_side": "right",
|
90 |
"top_k": 50,
|
91 |
"top_p": 1.0,
|
92 |
-
"torch_dtype": "
|
93 |
"torchscript": false,
|
94 |
"typical_p": 1.0,
|
95 |
"use_bfloat16": false,
|
96 |
"use_cache": true,
|
97 |
"use_sliding_window": false,
|
98 |
-
"vocab_size":
|
99 |
},
|
|
|
|
|
100 |
"mm_hidden_size": 1152,
|
101 |
"mm_projector_cfg": {
|
102 |
"_attn_implementation_autoset": false,
|
103 |
-
"_name_or_path": "
|
104 |
"add_cross_attention": false,
|
105 |
"architectures": [
|
106 |
"MultimodalProjector"
|
@@ -160,7 +169,7 @@
|
|
160 |
"tokenizer_class": null,
|
161 |
"top_k": 50,
|
162 |
"top_p": 1.0,
|
163 |
-
"torch_dtype": "
|
164 |
"torchscript": false,
|
165 |
"typical_p": 1.0,
|
166 |
"use_bfloat16": false
|
@@ -186,10 +195,12 @@
|
|
186 |
"tune_language_model": true,
|
187 |
"tune_mm_projector": true,
|
188 |
"tune_vision_tower": true,
|
|
|
|
|
189 |
"vision_resolution": -1,
|
190 |
"vision_tower_cfg": {
|
191 |
"_attn_implementation_autoset": false,
|
192 |
-
"_name_or_path": "
|
193 |
"add_cross_attention": false,
|
194 |
"architectures": [
|
195 |
"SiglipVisionModel"
|
@@ -261,17 +272,11 @@
|
|
261 |
"tokenizer_class": null,
|
262 |
"top_k": 50,
|
263 |
"top_p": 1.0,
|
264 |
-
"torch_dtype": "
|
265 |
"torchscript": false,
|
266 |
"typical_p": 1.0,
|
267 |
"use_bfloat16": false,
|
268 |
"vision_use_head": false
|
269 |
},
|
270 |
-
"
|
271 |
-
|
272 |
-
"AutoProcessor": "auto_processor.VILAProcessor",
|
273 |
-
"AutoConfig": "modeling_vila.VILAConfig",
|
274 |
-
"AutoModel": "modeling_vila.VILAForCasualLM",
|
275 |
-
"AutoModelForCausalLM": "modeling_vila.VILAForCasualLM"
|
276 |
-
}
|
277 |
-
}
|
|
|
1 |
{
|
2 |
"_attn_implementation_autoset": true,
|
3 |
+
"_name_or_path": "NVILA-Lite-2B-hf-preview",
|
4 |
"architectures": [
|
5 |
"VILAForCasualLM"
|
6 |
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_vila.VILAConfig",
|
9 |
+
"AutoModel": "modeling_vila.VILAForCasualLM",
|
10 |
+
"AutoModelForCausalLM": "modeling_vila.VILAForCasualLM",
|
11 |
+
"AutoProcessor": "auto_processor.VILAProcessor"
|
12 |
+
},
|
13 |
"chat_template": null,
|
14 |
"drop_path_rate": 0.0,
|
15 |
"dynamic_s2": false,
|
16 |
"fps": 0.0,
|
17 |
"hidden_size": 1536,
|
18 |
"image_aspect_ratio": "dynamic",
|
19 |
+
"image_encoder": "{\"_target_\": \"llava.model.encoders.BasicImageEncoder\"}",
|
20 |
"interpolate_mode": "linear",
|
21 |
"llm_cfg": {
|
22 |
"_attn_implementation_autoset": false,
|
23 |
+
"_name_or_path": "NVILA-Lite-2B-hf-preview/llm",
|
24 |
"add_cross_attention": false,
|
25 |
"architectures": [
|
26 |
"Qwen2ForCausalLM"
|
|
|
60 |
"max_position_embeddings": 32768,
|
61 |
"max_window_layers": 28,
|
62 |
"min_length": 0,
|
63 |
+
"model_max_length": null,
|
64 |
"model_type": "qwen2",
|
65 |
"no_repeat_ngram_size": 0,
|
66 |
"num_attention_heads": 12,
|
|
|
96 |
"tokenizer_padding_side": "right",
|
97 |
"top_k": 50,
|
98 |
"top_p": 1.0,
|
99 |
+
"torch_dtype": "float16",
|
100 |
"torchscript": false,
|
101 |
"typical_p": 1.0,
|
102 |
"use_bfloat16": false,
|
103 |
"use_cache": true,
|
104 |
"use_sliding_window": false,
|
105 |
+
"vocab_size": 151651
|
106 |
},
|
107 |
+
"max_tiles": 12,
|
108 |
+
"min_tiles": 1,
|
109 |
"mm_hidden_size": 1152,
|
110 |
"mm_projector_cfg": {
|
111 |
"_attn_implementation_autoset": false,
|
112 |
+
"_name_or_path": "NVILA-Lite-2B-hf-preview/mm_projector",
|
113 |
"add_cross_attention": false,
|
114 |
"architectures": [
|
115 |
"MultimodalProjector"
|
|
|
169 |
"tokenizer_class": null,
|
170 |
"top_k": 50,
|
171 |
"top_p": 1.0,
|
172 |
+
"torch_dtype": "float16",
|
173 |
"torchscript": false,
|
174 |
"typical_p": 1.0,
|
175 |
"use_bfloat16": false
|
|
|
195 |
"tune_language_model": true,
|
196 |
"tune_mm_projector": true,
|
197 |
"tune_vision_tower": true,
|
198 |
+
"version": "2.0",
|
199 |
+
"video_encoder": "{\"_target_\": \"llava.model.encoders.BasicVideoEncoder\"}",
|
200 |
"vision_resolution": -1,
|
201 |
"vision_tower_cfg": {
|
202 |
"_attn_implementation_autoset": false,
|
203 |
+
"_name_or_path": "NVILA-Lite-2B-hf-preview/vision_tower",
|
204 |
"add_cross_attention": false,
|
205 |
"architectures": [
|
206 |
"SiglipVisionModel"
|
|
|
272 |
"tokenizer_class": null,
|
273 |
"top_k": 50,
|
274 |
"top_p": 1.0,
|
275 |
+
"torch_dtype": "float16",
|
276 |
"torchscript": false,
|
277 |
"typical_p": 1.0,
|
278 |
"use_bfloat16": false,
|
279 |
"vision_use_head": false
|
280 |
},
|
281 |
+
"vision_tower_lr": null
|
282 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
distributed.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
from typing import Any, List, Optional
|
4 |
+
|
5 |
+
from torch import distributed as dist
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"init",
|
9 |
+
"is_initialized",
|
10 |
+
"size",
|
11 |
+
"rank",
|
12 |
+
"local_size",
|
13 |
+
"local_rank",
|
14 |
+
"is_main",
|
15 |
+
"barrier",
|
16 |
+
"gather",
|
17 |
+
"all_gather",
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
def init() -> None:
|
22 |
+
if "RANK" not in os.environ:
|
23 |
+
warnings.warn("Environment variable `RANK` is not set. Skipping distributed initialization.")
|
24 |
+
return
|
25 |
+
dist.init_process_group(backend="nccl", init_method="env://")
|
26 |
+
|
27 |
+
|
28 |
+
def is_initialized() -> bool:
|
29 |
+
return dist.is_initialized()
|
30 |
+
|
31 |
+
|
32 |
+
def size() -> int:
|
33 |
+
return int(os.environ.get("WORLD_SIZE", 1))
|
34 |
+
|
35 |
+
|
36 |
+
def rank() -> int:
|
37 |
+
return int(os.environ.get("RANK", 0))
|
38 |
+
|
39 |
+
|
40 |
+
def local_size() -> int:
|
41 |
+
return int(os.environ.get("LOCAL_WORLD_SIZE", 1))
|
42 |
+
|
43 |
+
|
44 |
+
def local_rank() -> int:
|
45 |
+
return int(os.environ.get("LOCAL_RANK", 0))
|
46 |
+
|
47 |
+
|
48 |
+
def is_main() -> bool:
|
49 |
+
return rank() == 0
|
50 |
+
|
51 |
+
|
52 |
+
def barrier() -> None:
|
53 |
+
dist.barrier()
|
54 |
+
|
55 |
+
|
56 |
+
def gather(obj: Any, dst: int = 0) -> Optional[List[Any]]:
|
57 |
+
if not is_initialized():
|
58 |
+
return [obj]
|
59 |
+
if is_main():
|
60 |
+
objs = [None for _ in range(size())]
|
61 |
+
dist.gather_object(obj, objs, dst=dst)
|
62 |
+
return objs
|
63 |
+
else:
|
64 |
+
dist.gather_object(obj, dst=dst)
|
65 |
+
return None
|
66 |
+
|
67 |
+
|
68 |
+
def all_gather(obj: Any) -> List[Any]:
|
69 |
+
if not is_initialized():
|
70 |
+
return [obj]
|
71 |
+
objs = [None for _ in range(size())]
|
72 |
+
dist.all_gather_object(objs, obj)
|
73 |
+
return objs
|
llm/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"Qwen2ForCausalLM"
|
5 |
],
|
@@ -12,7 +12,7 @@
|
|
12 |
"intermediate_size": 8960,
|
13 |
"max_position_embeddings": 32768,
|
14 |
"max_window_layers": 28,
|
15 |
-
"model_max_length":
|
16 |
"model_type": "qwen2",
|
17 |
"num_attention_heads": 12,
|
18 |
"num_hidden_layers": 28,
|
@@ -24,9 +24,9 @@
|
|
24 |
"tie_word_embeddings": true,
|
25 |
"tokenizer_model_max_length": 4096,
|
26 |
"tokenizer_padding_side": "right",
|
27 |
-
"torch_dtype": "
|
28 |
"transformers_version": "4.46.0",
|
29 |
"use_cache": true,
|
30 |
"use_sliding_window": false,
|
31 |
-
"vocab_size":
|
32 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "NVILA-Lite-2B-hf-preview/llm",
|
3 |
"architectures": [
|
4 |
"Qwen2ForCausalLM"
|
5 |
],
|
|
|
12 |
"intermediate_size": 8960,
|
13 |
"max_position_embeddings": 32768,
|
14 |
"max_window_layers": 28,
|
15 |
+
"model_max_length": null,
|
16 |
"model_type": "qwen2",
|
17 |
"num_attention_heads": 12,
|
18 |
"num_hidden_layers": 28,
|
|
|
24 |
"tie_word_embeddings": true,
|
25 |
"tokenizer_model_max_length": 4096,
|
26 |
"tokenizer_padding_side": "right",
|
27 |
+
"torch_dtype": "float16",
|
28 |
"transformers_version": "4.46.0",
|
29 |
"use_cache": true,
|
30 |
"use_sliding_window": false,
|
31 |
+
"vocab_size": 151651
|
32 |
}
|
llm/model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e025b53d85054b09b0dc887b14a07d8e1faeda7430842fbf6940f1c1177adf3a
|
3 |
+
size 3086591288
|
loss.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.nn.functional import cross_entropy
|
5 |
+
|
6 |
+
from .constants import IGNORE_INDEX
|
7 |
+
|
8 |
+
__all__ = ["soft_cross_entropy"]
|
9 |
+
|
10 |
+
|
11 |
+
def soft_cross_entropy(
|
12 |
+
outputs: torch.Tensor,
|
13 |
+
targets: torch.Tensor,
|
14 |
+
soft_tokens: Union[torch.Tensor, List[int]],
|
15 |
+
std: float = 1,
|
16 |
+
ignore_index: int = IGNORE_INDEX,
|
17 |
+
) -> torch.Tensor:
|
18 |
+
# Remove last token from outputs and first token from targets
|
19 |
+
outputs = outputs[..., :-1, :].contiguous()
|
20 |
+
targets = targets[..., 1:].contiguous()
|
21 |
+
|
22 |
+
# Flatten outputs and targets
|
23 |
+
targets = targets.view(-1)
|
24 |
+
outputs = outputs.view(targets.size(0), -1)
|
25 |
+
|
26 |
+
# Remove outputs and targets with ignore_index
|
27 |
+
indices = targets != ignore_index
|
28 |
+
outputs = outputs[indices]
|
29 |
+
targets = targets[indices]
|
30 |
+
|
31 |
+
# Convert soft token IDs to tensor
|
32 |
+
if isinstance(soft_tokens, list):
|
33 |
+
soft_tokens = torch.tensor(soft_tokens).to(targets)
|
34 |
+
|
35 |
+
# Calculate loss for non-soft tokens
|
36 |
+
indices = torch.isin(targets, soft_tokens, invert=True)
|
37 |
+
loss = cross_entropy(outputs[indices], targets[indices], reduction="sum")
|
38 |
+
|
39 |
+
# Calculate loss for soft tokens
|
40 |
+
indices = torch.isin(targets, soft_tokens)
|
41 |
+
targets_indices = torch.zeros_like(outputs[indices])
|
42 |
+
for k, target in enumerate(targets[indices]):
|
43 |
+
dist = torch.exp(-((target - soft_tokens) ** 2) / (2 * std**2))
|
44 |
+
targets_indices[k][soft_tokens] = dist / dist.sum()
|
45 |
+
loss += cross_entropy(outputs[indices], targets_indices, reduction="sum")
|
46 |
+
|
47 |
+
# Return average loss
|
48 |
+
return loss / targets.size(0)
|
mm_projector/config.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"MultimodalProjector"
|
5 |
],
|
6 |
"mm_projector_type": "mlp_downsample_3x3_fix",
|
7 |
"model_type": "v2l_projector",
|
8 |
-
"torch_dtype": "
|
9 |
"transformers_version": "4.46.0"
|
10 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "NVILA-Lite-2B-hf-preview/mm_projector",
|
3 |
"architectures": [
|
4 |
"MultimodalProjector"
|
5 |
],
|
6 |
"mm_projector_type": "mlp_downsample_3x3_fix",
|
7 |
"model_type": "v2l_projector",
|
8 |
+
"torch_dtype": "float16",
|
9 |
"transformers_version": "4.46.0"
|
10 |
}
|
mm_projector/model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a884468cfc9b3ff37715e3bdb1bbea378fba5eb7a1b883e2958a73313eb5d35
|
3 |
+
size 87068256
|
model_utils_packing.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from importlib import import_module
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import transformers
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
__all__ = ["patch"]
|
10 |
+
|
11 |
+
|
12 |
+
def _get_unpad_data(attention_mask: torch.Tensor, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
13 |
+
if hasattr(_get_unpad_data, "seqlens_in_batch"):
|
14 |
+
seqlens_in_batch = _get_unpad_data.seqlens_in_batch
|
15 |
+
else:
|
16 |
+
seqlens_in_batch = torch.sum(attention_mask, dim=1)
|
17 |
+
|
18 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
19 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
20 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
21 |
+
return indices, cu_seqlens, max_seqlen_in_batch
|
22 |
+
|
23 |
+
|
24 |
+
def set_seqlens_in_batch(seqlens_in_batch: torch.Tensor) -> None:
|
25 |
+
_get_unpad_data.seqlens_in_batch = seqlens_in_batch
|
26 |
+
|
27 |
+
|
28 |
+
def patch(model: nn.Module) -> None:
|
29 |
+
if transformers.__version__ < "4.43.0":
|
30 |
+
m = import_module(model.__module__)
|
31 |
+
if not hasattr(m, "_get_unpad_data"):
|
32 |
+
raise ValueError(f"Module {m} does not have function '_get_unpad_data' for packing")
|
33 |
+
m._get_unpad_data = _get_unpad_data
|
34 |
+
else:
|
35 |
+
transformers.modeling_flash_attention_utils._get_unpad_data = _get_unpad_data
|
modeling_vila.py
CHANGED
@@ -44,15 +44,21 @@ from .builder import build_llm_and_tokenizer
|
|
44 |
from .configuration_vila import VILAConfig
|
45 |
from .constants import *
|
46 |
from .conversation import SeparatorStyle, default_conversation
|
|
|
|
|
47 |
from .media import extract_media
|
48 |
from .media_encoder import BasicImageEncoder, BasicVideoEncoder
|
49 |
from .mm_utils import process_image, process_images
|
|
|
50 |
from .siglip_encoder import SiglipVisionTower, SiglipVisionTowerDynamicS2, SiglipVisionTowerS2
|
51 |
from .tokenizer_utils import tokenize_conversation
|
52 |
from .utils import get_model_config, load_tokenizer_then_handle_media_tokens_and_chat_template
|
53 |
|
54 |
-
|
55 |
# from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS
|
|
|
|
|
|
|
|
|
56 |
# quick hack for remote code
|
57 |
def get_pg_manager():
|
58 |
return None
|
@@ -97,28 +103,29 @@ def get_vila_version(model_path: str) -> str:
|
|
97 |
|
98 |
def generate_jinja_template(conv_mode: str) -> str:
|
99 |
if conv_mode == "vicuna_v1":
|
100 |
-
return """{% set system_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." %}
|
101 |
-
{% set roles = ["
|
102 |
{% set sep = " " %}
|
103 |
-
{% set sep2 = "</s>" %}
|
104 |
|
105 |
{{ system_prompt }}
|
106 |
|
107 |
{% for message in messages %}
|
108 |
{% if message['role'] == roles[0] %}
|
109 |
-
{{
|
110 |
{% else %}
|
111 |
-
{{
|
112 |
{% endif %}
|
113 |
-
{% endfor %}
|
|
|
|
|
|
|
|
|
114 |
elif conv_mode == "llama_3":
|
115 |
-
return """{% set system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id
|
116 |
-
{% set roles = ["<|start_header_id|>user<|end_header_id
|
117 |
{% set sep = "<|eot_id|>" %}
|
118 |
-
{% set sep2 = "<|end_of_text|>" %}
|
119 |
|
120 |
{{ system_prompt }}
|
121 |
-
|
122 |
{% for message in messages %}
|
123 |
{% if message['role'] == 'user' %}
|
124 |
{{ roles[0] }}{{ message['content'] }}{{ sep }}
|
@@ -126,8 +133,10 @@ def generate_jinja_template(conv_mode: str) -> str:
|
|
126 |
{{ roles[1] }}{{ message['content'] }}{{ sep }}
|
127 |
{% endif %}
|
128 |
{% endfor %}
|
129 |
-
|
130 |
-
{{
|
|
|
|
|
131 |
elif conv_mode == "hermes_2":
|
132 |
return """{% set system_prompt = "<|im_start|>system\nAnswer the questions." %}
|
133 |
{% set roles = ["<|im_start|>user\n", "<|im_start|>assistant\n"] %}
|
@@ -202,6 +211,7 @@ class VILAPretrainedModel(PreTrainedModel):
|
|
202 |
# set device_map auto can autoamtically shard llm to different devices
|
203 |
self.llm, self.tokenizer = self.init_llm(llm_cfg, config, device_map=device_map)
|
204 |
|
|
|
205 |
self.encoders = {"image": BasicImageEncoder(self), "video": BasicVideoEncoder(self)}
|
206 |
|
207 |
self.post_config()
|
@@ -218,18 +228,20 @@ class VILAPretrainedModel(PreTrainedModel):
|
|
218 |
output_dir: str = None,
|
219 |
vila_version: str | None = None,
|
220 |
conv_mode: str | None = None,
|
221 |
-
copy: bool =
|
|
|
|
|
222 |
*model_args,
|
223 |
**kwargs,
|
224 |
):
|
225 |
# assert type(self) == VILAForCasualLM, "This method is only available for VILAForCasualLM."
|
226 |
-
|
227 |
-
|
228 |
if os.path.isdir(model_path):
|
229 |
model_path = model_path
|
230 |
else:
|
231 |
-
|
232 |
-
|
|
|
233 |
print("downloading HF model to", model_path)
|
234 |
|
235 |
if check_dot_in_model_path(model_path) and output_dir is None:
|
@@ -240,10 +252,18 @@ class VILAPretrainedModel(PreTrainedModel):
|
|
240 |
raise ValueError(
|
241 |
f"Output directory {output_dir} contains a dot, which will affect the remote code loading. Please specify a valid output directory without dots."
|
242 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
if vila_version is None:
|
244 |
-
vila_version = get_vila_version(
|
245 |
|
246 |
-
cfg_path = os.path.join(
|
247 |
config = json.load(open(cfg_path))
|
248 |
config["version"] = "2.0" # nvila tag
|
249 |
config["architectures"] = ["VILAForCasualLM"]
|
@@ -253,24 +273,53 @@ class VILAPretrainedModel(PreTrainedModel):
|
|
253 |
"AutoModel": "modeling_vila.VILAForCasualLM",
|
254 |
"AutoModelForCausalLM": "modeling_vila.VILAForCasualLM",
|
255 |
}
|
|
|
256 |
config["model_type"] = "vila"
|
257 |
if vila_version in ["vila1.5", "vila-m3"]:
|
258 |
if conv_mode is None:
|
259 |
-
raise ValueError(f"Please specify the conversation mode for {
|
260 |
config["chat_template"] = conv_mode
|
261 |
jinja_template = generate_jinja_template(conv_mode)
|
262 |
-
jinja_path = os.path.join(
|
263 |
with open(jinja_path, "w") as f:
|
264 |
f.write(jinja_template)
|
265 |
json.dump(config, open(cfg_path, "w"), indent=2)
|
266 |
-
self.copy_remote_py_files(model_path, copy=copy)
|
267 |
|
268 |
##########################################################################################
|
269 |
-
config = AutoConfig.from_pretrained(
|
270 |
-
tokenizer = load_tokenizer_then_handle_media_tokens_and_chat_template(
|
271 |
tokenizer.save_pretrained(osp.join(output_dir, "llm"))
|
272 |
##########################################################################################
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
@classmethod
|
275 |
def copy_remote_py_files(cls, output_dir, copy=True):
|
276 |
## copy .py and REAMDE for next loading remote code
|
@@ -539,6 +588,15 @@ class VILAForCasualLM(VILAPretrainedModel):
|
|
539 |
image_features = self.get_mm_projector()(image_features)
|
540 |
return image_features
|
541 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
def _embed(
|
543 |
self,
|
544 |
input_ids: torch.Tensor,
|
@@ -547,18 +605,25 @@ class VILAForCasualLM(VILAPretrainedModel):
|
|
547 |
labels: Optional[torch.Tensor],
|
548 |
attention_mask: Optional[torch.Tensor],
|
549 |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
|
|
|
|
|
550 |
labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX)
|
551 |
attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool)
|
552 |
|
553 |
-
|
554 |
-
PROCESS_GROUP_MANAGER = None
|
555 |
if PROCESS_GROUP_MANAGER is not None:
|
556 |
for name in media:
|
557 |
self.encoders[name].end_tokens = None
|
558 |
|
559 |
# Extract text and media embeddings
|
560 |
text_embeds = self.llm.model.embed_tokens(input_ids)
|
561 |
-
|
|
|
|
|
|
|
|
|
562 |
|
563 |
# This is a workaround to make sure the dummy embeddings are consumed
|
564 |
while media_embeds.get("dummy"):
|
@@ -586,12 +651,20 @@ class VILAForCasualLM(VILAPretrainedModel):
|
|
586 |
name = media_tokens[input_ids[k][pos].item()]
|
587 |
input = media_embeds[name].popleft()
|
588 |
label = torch.full([input.shape[0]], IGNORE_INDEX, device=labels[k].device, dtype=labels[k].dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
589 |
else:
|
590 |
end = pos
|
591 |
while end < len(labels[k]) and input_ids[k][end].item() not in media_tokens:
|
592 |
end += 1
|
593 |
input = text_embeds[k][pos:end]
|
594 |
label = labels[k][pos:end]
|
|
|
|
|
595 |
inputs_mk.append(input)
|
596 |
labels_mk.append(label)
|
597 |
pos = end
|
@@ -602,7 +675,7 @@ class VILAForCasualLM(VILAPretrainedModel):
|
|
602 |
# Check if all media embeddings are consumed
|
603 |
for name in media_embeds:
|
604 |
if media_embeds[name]:
|
605 |
-
raise ValueError(f"Not all {name} embeddings are consumed!")
|
606 |
|
607 |
# Truncate sequences to `model_max_length` as media embeddings are inserted
|
608 |
inputs, labels = self.__truncate_sequence(inputs, labels)
|
@@ -620,7 +693,7 @@ class VILAForCasualLM(VILAPretrainedModel):
|
|
620 |
if self.training:
|
621 |
# Gather metainfo of media objects from all ranks
|
622 |
info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
|
623 |
-
infos = list(chain(
|
624 |
|
625 |
# The entire batch does not contain any media objects of this type.
|
626 |
if not infos:
|
@@ -1011,6 +1084,10 @@ class VILAForCasualLM(VILAPretrainedModel):
|
|
1011 |
attention_mask: Optional[torch.LongTensor] = None,
|
1012 |
**generation_kwargs,
|
1013 |
):
|
|
|
|
|
|
|
|
|
1014 |
inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask)
|
1015 |
return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs)
|
1016 |
|
|
|
44 |
from .configuration_vila import VILAConfig
|
45 |
from .constants import *
|
46 |
from .conversation import SeparatorStyle, default_conversation
|
47 |
+
from .distributed import all_gather as vila_all_gather
|
48 |
+
from .loss import soft_cross_entropy
|
49 |
from .media import extract_media
|
50 |
from .media_encoder import BasicImageEncoder, BasicVideoEncoder
|
51 |
from .mm_utils import process_image, process_images
|
52 |
+
from .model_utils_packing import set_seqlens_in_batch
|
53 |
from .siglip_encoder import SiglipVisionTower, SiglipVisionTowerDynamicS2, SiglipVisionTowerS2
|
54 |
from .tokenizer_utils import tokenize_conversation
|
55 |
from .utils import get_model_config, load_tokenizer_then_handle_media_tokens_and_chat_template
|
56 |
|
|
|
57 |
# from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS
|
58 |
+
|
59 |
+
# ease debugging
|
60 |
+
python_input = input
|
61 |
+
|
62 |
# quick hack for remote code
|
63 |
def get_pg_manager():
|
64 |
return None
|
|
|
103 |
|
104 |
def generate_jinja_template(conv_mode: str) -> str:
|
105 |
if conv_mode == "vicuna_v1":
|
106 |
+
return """{% set system_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. " %}
|
107 |
+
{% set roles = ["user", "assistant"] %}
|
108 |
{% set sep = " " %}
|
|
|
109 |
|
110 |
{{ system_prompt }}
|
111 |
|
112 |
{% for message in messages %}
|
113 |
{% if message['role'] == roles[0] %}
|
114 |
+
{{ "USER: " }}{{ sep }}{{ message['content'] }}{{ sep }}
|
115 |
{% else %}
|
116 |
+
{{ "ASSISTANT: " }}{{ sep }}{{ message['content'] }}{{ sep }}
|
117 |
{% endif %}
|
118 |
+
{% endfor %}
|
119 |
+
{% if messages[-1]['role'] == 'user' %}
|
120 |
+
{{ "ASSISTANT:" }}
|
121 |
+
{% endif %}
|
122 |
+
"""
|
123 |
elif conv_mode == "llama_3":
|
124 |
+
return """{% set system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|>" %}
|
125 |
+
{% set roles = ["<|start_header_id|>user<|end_header_id|>\\n\\n", "<|start_header_id|>assistant<|end_header_id|>\\n\\n"]%}
|
126 |
{% set sep = "<|eot_id|>" %}
|
|
|
127 |
|
128 |
{{ system_prompt }}
|
|
|
129 |
{% for message in messages %}
|
130 |
{% if message['role'] == 'user' %}
|
131 |
{{ roles[0] }}{{ message['content'] }}{{ sep }}
|
|
|
133 |
{{ roles[1] }}{{ message['content'] }}{{ sep }}
|
134 |
{% endif %}
|
135 |
{% endfor %}
|
136 |
+
{% if messages[-1]['role'] == 'user' %}
|
137 |
+
{{ roles[1] }}
|
138 |
+
{% endif %}
|
139 |
+
"""
|
140 |
elif conv_mode == "hermes_2":
|
141 |
return """{% set system_prompt = "<|im_start|>system\nAnswer the questions." %}
|
142 |
{% set roles = ["<|im_start|>user\n", "<|im_start|>assistant\n"] %}
|
|
|
211 |
# set device_map auto can autoamtically shard llm to different devices
|
212 |
self.llm, self.tokenizer = self.init_llm(llm_cfg, config, device_map=device_map)
|
213 |
|
214 |
+
# NOTE(ligeng): need to add other decoders from config
|
215 |
self.encoders = {"image": BasicImageEncoder(self), "video": BasicVideoEncoder(self)}
|
216 |
|
217 |
self.post_config()
|
|
|
228 |
output_dir: str = None,
|
229 |
vila_version: str | None = None,
|
230 |
conv_mode: str | None = None,
|
231 |
+
copy: bool = False,
|
232 |
+
copy_weights: bool = True,
|
233 |
+
copy_code: bool = True,
|
234 |
*model_args,
|
235 |
**kwargs,
|
236 |
):
|
237 |
# assert type(self) == VILAForCasualLM, "This method is only available for VILAForCasualLM."
|
238 |
+
assert model_path != output_dir, "model_path and output_dir cannot be the same"
|
|
|
239 |
if os.path.isdir(model_path):
|
240 |
model_path = model_path
|
241 |
else:
|
242 |
+
from huggingface_hub import HfApi, snapshot_download
|
243 |
+
|
244 |
+
model_path = snapshot_download(model_path)
|
245 |
print("downloading HF model to", model_path)
|
246 |
|
247 |
if check_dot_in_model_path(model_path) and output_dir is None:
|
|
|
252 |
raise ValueError(
|
253 |
f"Output directory {output_dir} contains a dot, which will affect the remote code loading. Please specify a valid output directory without dots."
|
254 |
)
|
255 |
+
|
256 |
+
if copy:
|
257 |
+
print("copy is set to True, copying weights and code to output_dir")
|
258 |
+
copy_weights = copy_code = True
|
259 |
+
# copy weights and code to output_dir
|
260 |
+
self.copy_or_symlink_directory(model_path, output_dir, copy=copy_weights)
|
261 |
+
self.copy_remote_py_files(output_dir, copy=copy_code)
|
262 |
+
|
263 |
if vila_version is None:
|
264 |
+
vila_version = get_vila_version(output_dir)
|
265 |
|
266 |
+
cfg_path = os.path.join(output_dir, "config.json")
|
267 |
config = json.load(open(cfg_path))
|
268 |
config["version"] = "2.0" # nvila tag
|
269 |
config["architectures"] = ["VILAForCasualLM"]
|
|
|
273 |
"AutoModel": "modeling_vila.VILAForCasualLM",
|
274 |
"AutoModelForCausalLM": "modeling_vila.VILAForCasualLM",
|
275 |
}
|
276 |
+
# vila1.5 legacy support
|
277 |
config["model_type"] = "vila"
|
278 |
if vila_version in ["vila1.5", "vila-m3"]:
|
279 |
if conv_mode is None:
|
280 |
+
raise ValueError(f"Please specify the conversation mode for {output_dir}.")
|
281 |
config["chat_template"] = conv_mode
|
282 |
jinja_template = generate_jinja_template(conv_mode)
|
283 |
+
jinja_path = os.path.join(output_dir, f"{conv_mode}.jinja")
|
284 |
with open(jinja_path, "w") as f:
|
285 |
f.write(jinja_template)
|
286 |
json.dump(config, open(cfg_path, "w"), indent=2)
|
|
|
287 |
|
288 |
##########################################################################################
|
289 |
+
config = AutoConfig.from_pretrained(output_dir, trust_remote_code=True)
|
290 |
+
tokenizer = load_tokenizer_then_handle_media_tokens_and_chat_template(output_dir, config)
|
291 |
tokenizer.save_pretrained(osp.join(output_dir, "llm"))
|
292 |
##########################################################################################
|
293 |
|
294 |
+
@classmethod
|
295 |
+
def copy_or_symlink_directory(cls, model_path, output_dir, copy=True):
|
296 |
+
# Create output directory if it doesn't exist
|
297 |
+
os.makedirs(output_dir, exist_ok=True)
|
298 |
+
# Create symlinks for all files in model_path to output_dir
|
299 |
+
for item in os.listdir(model_path):
|
300 |
+
src_path = os.path.join(model_path, item)
|
301 |
+
dst_path = os.path.join(output_dir, item)
|
302 |
+
|
303 |
+
# Remove existing file/directory at destination if it exists
|
304 |
+
if os.path.exists(dst_path):
|
305 |
+
if os.path.islink(dst_path):
|
306 |
+
os.unlink(dst_path)
|
307 |
+
elif os.path.isdir(dst_path):
|
308 |
+
shutil.rmtree(dst_path)
|
309 |
+
else:
|
310 |
+
os.remove(dst_path)
|
311 |
+
|
312 |
+
# Create symlink
|
313 |
+
if copy:
|
314 |
+
if os.path.isdir(src_path):
|
315 |
+
shutil.copytree(src_path, dst_path)
|
316 |
+
else:
|
317 |
+
shutil.copy2(src_path, dst_path)
|
318 |
+
print(f"Copied {src_path} to {dst_path}")
|
319 |
+
else:
|
320 |
+
os.symlink(src_path, dst_path)
|
321 |
+
print(f"Created symlink from {src_path} to {dst_path}")
|
322 |
+
|
323 |
@classmethod
|
324 |
def copy_remote_py_files(cls, output_dir, copy=True):
|
325 |
## copy .py and REAMDE for next loading remote code
|
|
|
588 |
image_features = self.get_mm_projector()(image_features)
|
589 |
return image_features
|
590 |
|
591 |
+
def train(self, mode: bool = True):
|
592 |
+
if mode:
|
593 |
+
print(f"Set padding side to right for training, {mode=}")
|
594 |
+
self.tokenizer.padding_side = "right"
|
595 |
+
else:
|
596 |
+
print(f"Set padding side to left for evaluation, {mode=}")
|
597 |
+
self.tokenizer.padding_side = "left"
|
598 |
+
super().train(mode)
|
599 |
+
|
600 |
def _embed(
|
601 |
self,
|
602 |
input_ids: torch.Tensor,
|
|
|
605 |
labels: Optional[torch.Tensor],
|
606 |
attention_mask: Optional[torch.Tensor],
|
607 |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
608 |
+
# NOTE(ligeng): deep copy to avoid modifying the original media and media_config
|
609 |
+
media = copy.deepcopy(media)
|
610 |
+
media_config = copy.deepcopy(media_config)
|
611 |
+
|
612 |
labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX)
|
613 |
attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool)
|
614 |
|
615 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
|
|
616 |
if PROCESS_GROUP_MANAGER is not None:
|
617 |
for name in media:
|
618 |
self.encoders[name].end_tokens = None
|
619 |
|
620 |
# Extract text and media embeddings
|
621 |
text_embeds = self.llm.model.embed_tokens(input_ids)
|
622 |
+
if media is not None:
|
623 |
+
media_embeds = self.__embed_media_tokens(media, media_config)
|
624 |
+
else:
|
625 |
+
# no media was provided, so we just return an empty dict
|
626 |
+
media_embeds = {}
|
627 |
|
628 |
# This is a workaround to make sure the dummy embeddings are consumed
|
629 |
while media_embeds.get("dummy"):
|
|
|
651 |
name = media_tokens[input_ids[k][pos].item()]
|
652 |
input = media_embeds[name].popleft()
|
653 |
label = torch.full([input.shape[0]], IGNORE_INDEX, device=labels[k].device, dtype=labels[k].dtype)
|
654 |
+
# print(f"{self.tokenizer.padding_side} [media] {k=} {pos=}, {self.tokenizer.batch_decode(input_ids[k][pos:pos+1])}"); python_input()
|
655 |
+
elif input_ids[k][pos].item() in (self.tokenizer.pad_token_id, self.tokenizer.eos_token_id):
|
656 |
+
end = pos + 1
|
657 |
+
pos = end
|
658 |
+
# print(f"[skip PAD/EOS] {k=} {pos=}, {self.tokenizer.batch_decode(input_ids[k][pos:end])}"); python_input()
|
659 |
+
continue
|
660 |
else:
|
661 |
end = pos
|
662 |
while end < len(labels[k]) and input_ids[k][end].item() not in media_tokens:
|
663 |
end += 1
|
664 |
input = text_embeds[k][pos:end]
|
665 |
label = labels[k][pos:end]
|
666 |
+
# print(f"[text] {k=} {pos=}, {self.tokenizer.batch_decode(input_ids[k][pos:end])}"); python_input()
|
667 |
+
|
668 |
inputs_mk.append(input)
|
669 |
labels_mk.append(label)
|
670 |
pos = end
|
|
|
675 |
# Check if all media embeddings are consumed
|
676 |
for name in media_embeds:
|
677 |
if media_embeds[name]:
|
678 |
+
raise ValueError(f"Not all {name} embeddings are consumed! Still {len(media_embeds[name])} left.")
|
679 |
|
680 |
# Truncate sequences to `model_max_length` as media embeddings are inserted
|
681 |
inputs, labels = self.__truncate_sequence(inputs, labels)
|
|
|
693 |
if self.training:
|
694 |
# Gather metainfo of media objects from all ranks
|
695 |
info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
|
696 |
+
infos = list(chain(vila_all_gather(info)))
|
697 |
|
698 |
# The entire batch does not contain any media objects of this type.
|
699 |
if not infos:
|
|
|
1084 |
attention_mask: Optional[torch.LongTensor] = None,
|
1085 |
**generation_kwargs,
|
1086 |
):
|
1087 |
+
if self.training:
|
1088 |
+
warnings.warn(
|
1089 |
+
"Model is in training mode, using default padding strategy to right. This is not recommended for generation."
|
1090 |
+
)
|
1091 |
inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask)
|
1092 |
return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs)
|
1093 |
|
utils.py
CHANGED
@@ -41,7 +41,7 @@ def load_tokenizer_then_handle_media_tokens_and_chat_template(
|
|
41 |
print(f"Using chat template: {config.chat_template}")
|
42 |
fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja")
|
43 |
if not os.path.exists(fpath):
|
44 |
-
fpath = os.path.join(
|
45 |
with open(fpath) as fd:
|
46 |
chat_template = fd.read()
|
47 |
tokenizer.chat_template = chat_template.replace(" ", "").replace("\n", "")
|
|
|
41 |
print(f"Using chat template: {config.chat_template}")
|
42 |
fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja")
|
43 |
if not os.path.exists(fpath):
|
44 |
+
fpath = os.path.join(model_name_or_path, f"{config.chat_template}.jinja")
|
45 |
with open(fpath) as fd:
|
46 |
chat_template = fd.read()
|
47 |
tokenizer.chat_template = chat_template.replace(" ", "").replace("\n", "")
|
vision_tower/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"SiglipVisionModel"
|
5 |
],
|
@@ -17,7 +17,7 @@
|
|
17 |
"patch_size": 14,
|
18 |
"projection_dim": 2048,
|
19 |
"projector_hidden_act": "gelu_fast",
|
20 |
-
"torch_dtype": "
|
21 |
"transformers_version": "4.46.0",
|
22 |
"vision_use_head": false
|
23 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "NVILA-Lite-2B-hf-preview/vision_tower",
|
3 |
"architectures": [
|
4 |
"SiglipVisionModel"
|
5 |
],
|
|
|
17 |
"patch_size": 14,
|
18 |
"projection_dim": 2048,
|
19 |
"projector_hidden_act": "gelu_fast",
|
20 |
+
"torch_dtype": "float16",
|
21 |
"transformers_version": "4.46.0",
|
22 |
"vision_use_head": false
|
23 |
}
|
vision_tower/model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ea53807bd8094c4acea02b1e4c9677207bcd635c44e9c6ec9a0862d558a26d0
|
3 |
+
size 826707464
|