File size: 1,003 Bytes
f7ec78e 8dd9d89 f7ec78e 8dd9d89 f7ec78e 8dd9d89 f7ec78e 8dd9d89 f7ec78e 8dd9d89 7ce96e2 f4aaafc 7ce96e2 f4aaafc 8dd9d89 f4aaafc 7ce96e2 f4aaafc 8dd9d89 f4aaafc 7ce96e2 f4aaafc 7ce96e2 f4aaafc 7ce96e2 8dd9d89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
license: apache-2.0
language:
- en
metrics:
- accuracy
base_model:
- distilbert-base-uncased
pipeline_tag: text-classification
library_name: transformers
tags:
- text-classification
- news
- distilbert
- huggingface
- ag_news
---
# π DistilBERT News Classifier by Dheeraj
A text classification model fine-tuned on news headlines to classify them into one of four categories:
- `0 β Sports`
- `1 β Business`
- `2 β Tech`
- `3 β Science`
## π§ Model Info
This model is built using [DistilBERT](https://huggingface.co/distilbert-base-uncased) and fine-tuned using Hugging Face's `Trainer` API.
It is trained on a small dataset of sample headlines, inspired by AG News, for demonstration and educational purposes.
## π Example Usage
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="Dheeraj3103/distilbert-news-classifier-dheeraj")
result = classifier("NASA finds evidence of water on Mars.")
print(result)
|