--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:7598 - loss:DualMarginContrastiveLoss - loss:CustomBatchAllTripletLoss widget: - source_sentence: 科目:塗装。名称:PCaフッ素樹脂クリア塗り。 sentences: - 科目:塗装。名称:PCa面塗り(細幅物)。 - 科目:塗装。名称:間接照明塗り。 - 科目:塗装。名称:PCa面塗り。 - source_sentence: 科目:塗装。名称:PCa水性シリコン樹脂クリヤ塗り(細幅物)。 sentences: - 科目:塗装。名称:間接照明塗り(細幅物)。 - 科目:塗装。名称:間接照明塗り。 - 科目:塗装。名称:PCa面塗り(細幅物)。 - source_sentence: 科目:塗装。名称:間接照明ボックスOS塗り。 sentences: - 科目:塗装。名称:間接照明塗り。 - 科目:塗装。名称:その他塗装。 - 科目:塗装。名称:照明スリット下り天井塗り。 - source_sentence: 科目:塗装。名称:NAD塗り。 sentences: - 科目:塗装。名称:その他塗装。 - 科目:塗装。名称:その他塗装。 - 科目:塗装。名称:PCa面塗り(細幅物)。 - source_sentence: 科目:塗装。名称:PCa保護塗り(細幅物)。 sentences: - 科目:塗装。名称:PCa面塗り(細幅物)。 - 科目:塗装。名称:PCa面塗り(細幅物)。 - 科目:塗装。名称:PCa面塗り(細幅物)。 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v0_9_15") # Run inference sentences = [ '科目:塗装。名称:PCa保護塗り(細幅物)。', '科目:塗装。名称:PCa面塗り(細幅物)。', '科目:塗装。名称:PCa面塗り(細幅物)。', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 7,598 training samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence | label | |:-----------------------------------------|:---------------| | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | * Loss: sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 512 - `per_device_eval_batch_size`: 512 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 250 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: group_by_label #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 512 - `per_device_eval_batch_size`: 512 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 250 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: group_by_label - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | |:--------:|:----:|:-------------:| | 0.6667 | 10 | 0.0662 | | 1.3333 | 20 | 0.0 | | 2.0 | 30 | 0.0 | | 2.6667 | 40 | 0.0 | | 3.3333 | 50 | 0.0 | | 4.0 | 60 | 0.0 | | 4.6667 | 70 | 0.0 | | 5.3333 | 80 | 0.0 | | 6.0 | 90 | 0.0 | | 6.6667 | 100 | 0.0 | | 7.3333 | 110 | 0.0 | | 8.0 | 120 | 0.0 | | 8.6667 | 130 | 0.0 | | 9.3333 | 140 | 0.0 | | 10.0 | 150 | 0.0 | | 10.0 | 10 | 2.7711 | | 20.0 | 20 | 1.2115 | | 30.0 | 30 | 0.3753 | | 40.0 | 40 | 0.1646 | | 50.0 | 50 | 0.0876 | | 60.0 | 60 | 0.0559 | | 70.0 | 70 | 0.0344 | | 80.0 | 80 | 0.0262 | | 90.0 | 90 | 0.0194 | | 100.0 | 100 | 0.0218 | | 110.0 | 110 | 0.0214 | | 120.0 | 120 | 0.014 | | 130.0 | 130 | 0.0231 | | 140.0 | 140 | 0.0132 | | 150.0 | 150 | 0.0146 | | 3.7576 | 100 | 0.0701 | | 7.7576 | 200 | 0.0747 | | 11.7576 | 300 | 0.0709 | | 15.7576 | 400 | 0.0689 | | 19.7576 | 500 | 0.0622 | | 23.7576 | 600 | 0.0639 | | 27.7576 | 700 | 0.063 | | 31.7576 | 800 | 0.0605 | | 35.7576 | 900 | 0.061 | | 39.7576 | 1000 | 0.0602 | | 43.7576 | 1100 | 0.0609 | | 47.7576 | 1200 | 0.0596 | | 51.7576 | 1300 | 0.0568 | | 55.7576 | 1400 | 0.0593 | | 59.7576 | 1500 | 0.058 | | 63.7576 | 1600 | 0.0613 | | 67.7576 | 1700 | 0.0515 | | 71.7576 | 1800 | 0.0511 | | 75.7576 | 1900 | 0.0538 | | 79.7576 | 2000 | 0.0559 | | 83.7576 | 2100 | 0.0482 | | 87.7576 | 2200 | 0.0511 | | 91.7576 | 2300 | 0.0553 | | 95.7576 | 2400 | 0.0522 | | 99.7576 | 2500 | 0.0534 | | 103.7576 | 2600 | 0.0477 | | 107.7576 | 2700 | 0.052 | | 111.7576 | 2800 | 0.0518 | | 115.7576 | 2900 | 0.047 | | 119.7576 | 3000 | 0.0503 | | 123.7576 | 3100 | 0.0494 | | 127.7576 | 3200 | 0.0488 | | 131.7576 | 3300 | 0.052 | | 135.7576 | 3400 | 0.0459 | | 139.7576 | 3500 | 0.0467 | | 143.7576 | 3600 | 0.0493 | | 147.7576 | 3700 | 0.0453 | | 151.7576 | 3800 | 0.0457 | | 155.7576 | 3900 | 0.0462 | | 159.7576 | 4000 | 0.0451 | | 163.7576 | 4100 | 0.0446 | | 167.7576 | 4200 | 0.0438 | | 171.7576 | 4300 | 0.0398 | | 175.7576 | 4400 | 0.0414 | | 179.7576 | 4500 | 0.045 | | 183.7576 | 4600 | 0.0448 | | 187.7576 | 4700 | 0.0426 | | 191.7576 | 4800 | 0.0427 | | 195.7576 | 4900 | 0.0434 | | 199.7576 | 5000 | 0.039 | | 203.7576 | 5100 | 0.0381 | | 207.7576 | 5200 | 0.0434 | | 211.7576 | 5300 | 0.041 | | 215.7576 | 5400 | 0.0463 | | 219.7576 | 5500 | 0.0386 | | 223.7576 | 5600 | 0.0453 | | 227.7576 | 5700 | 0.0412 | | 231.7576 | 5800 | 0.0373 | | 235.7576 | 5900 | 0.0393 | | 239.7576 | 6000 | 0.0362 | | 243.7576 | 6100 | 0.0363 | | 247.7576 | 6200 | 0.0372 | ### Framework Versions - Python: 3.11.12 - Sentence Transformers: 3.4.1 - Transformers: 4.50.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CustomBatchAllTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```