dtm-hoinv commited on
Commit
2ca4232
·
verified ·
1 Parent(s): 43f012f

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7598
8
+ - loss:DualMarginContrastiveLoss
9
+ - loss:CustomBatchAllTripletLoss
10
+ widget:
11
+ - source_sentence: 科目:塗装。名称:PCaフッ素樹脂クリア塗り。
12
+ sentences:
13
+ - 科目:塗装。名称:PCa面塗り(細幅物)。
14
+ - 科目:塗装。名称:間接照明塗り。
15
+ - 科目:塗装。名称:PCa面塗り。
16
+ - source_sentence: 科目:塗装。名称:PCa水性シリコン樹脂クリヤ塗り(細幅物)。
17
+ sentences:
18
+ - 科目:塗装。名称:間接照明塗り(細幅物)。
19
+ - 科目:塗装。名称:間接照明塗り。
20
+ - 科目:塗装。名称:PCa面塗り(細幅物)。
21
+ - source_sentence: 科目:塗装。名称:間接照明ボックスOS塗り。
22
+ sentences:
23
+ - 科目:塗装。名称:間接照明塗り。
24
+ - 科目:塗装。名称:その他塗装。
25
+ - 科目:塗装。名称:照明スリット下り天井塗り。
26
+ - source_sentence: 科目:塗装。名称:NAD塗り。
27
+ sentences:
28
+ - 科目:塗装。名称:その他塗装。
29
+ - 科目:塗装。名称:その他塗装。
30
+ - 科目:塗装。名称:PCa面塗り(細幅物)。
31
+ - source_sentence: 科目:塗装。名称:PCa保護塗り(細幅物)。
32
+ sentences:
33
+ - 科目:塗装。名称:PCa面塗り(細幅物)。
34
+ - 科目:塗装。名称:PCa面塗り(細幅物)。
35
+ - 科目:塗装。名称:PCa面塗り(細幅物)。
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v0_9_15")
87
+ # Run inference
88
+ sentences = [
89
+ '科目:塗装。名称:PCa保護塗り(細幅物)。',
90
+ '科目:塗装。名称:PCa面塗り(細幅物)。',
91
+ '科目:塗装。名称:PCa面塗り(細幅物)。',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 768]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+ * Size: 7,598 training samples
146
+ * Columns: <code>sentence</code> and <code>label</code>
147
+ * Approximate statistics based on the first 1000 samples:
148
+ | | sentence | label |
149
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
150
+ | type | string | int |
151
+ | details | <ul><li>min: 11 tokens</li><li>mean: 17.2 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>0: ~0.30%</li><li>1: ~0.30%</li><li>2: ~0.30%</li><li>3: ~0.30%</li><li>4: ~0.30%</li><li>5: ~0.30%</li><li>6: ~0.30%</li><li>7: ~0.30%</li><li>8: ~0.30%</li><li>9: ~0.30%</li><li>10: ~0.30%</li><li>11: ~0.40%</li><li>12: ~0.30%</li><li>13: ~0.30%</li><li>14: ~0.30%</li><li>15: ~0.30%</li><li>16: ~0.30%</li><li>17: ~0.30%</li><li>18: ~0.50%</li><li>19: ~0.30%</li><li>20: ~0.30%</li><li>21: ~0.30%</li><li>22: ~0.30%</li><li>23: ~0.30%</li><li>24: ~0.30%</li><li>25: ~0.30%</li><li>26: ~0.30%</li><li>27: ~0.30%</li><li>28: ~0.30%</li><li>29: ~0.30%</li><li>30: ~0.30%</li><li>31: ~0.30%</li><li>32: ~0.30%</li><li>33: ~0.30%</li><li>34: ~0.30%</li><li>35: ~0.30%</li><li>36: ~0.30%</li><li>37: ~0.30%</li><li>38: ~0.30%</li><li>39: ~0.30%</li><li>40: ~0.40%</li><li>41: ~0.30%</li><li>42: ~0.30%</li><li>43: ~0.30%</li><li>44: ~0.60%</li><li>45: ~0.70%</li><li>46: ~0.30%</li><li>47: ~0.30%</li><li>48: ~0.30%</li><li>49: ~0.30%</li><li>50: ~0.30%</li><li>51: ~0.30%</li><li>52: ~0.30%</li><li>53: ~0.30%</li><li>54: ~0.30%</li><li>55: ~0.30%</li><li>56: ~0.30%</li><li>57: ~0.80%</li><li>58: ~0.30%</li><li>59: ~0.30%</li><li>60: ~0.60%</li><li>61: ~0.30%</li><li>62: ~0.30%</li><li>63: ~0.30%</li><li>64: ~0.50%</li><li>65: ~0.30%</li><li>66: ~0.30%</li><li>67: ~0.30%</li><li>68: ~0.30%</li><li>69: ~0.30%</li><li>70: ~0.60%</li><li>71: ~0.30%</li><li>72: ~0.30%</li><li>73: ~0.30%</li><li>74: ~0.30%</li><li>75: ~0.30%</li><li>76: ~0.30%</li><li>77: ~0.30%</li><li>78: ~0.30%</li><li>79: ~0.30%</li><li>80: ~0.30%</li><li>81: ~0.30%</li><li>82: ~0.30%</li><li>83: ~0.30%</li><li>84: ~0.80%</li><li>85: ~0.60%</li><li>86: ~0.50%</li><li>87: ~0.30%</li><li>88: ~0.30%</li><li>89: ~16.30%</li><li>90: ~0.30%</li><li>91: ~0.30%</li><li>92: ~0.30%</li><li>93: ~0.30%</li><li>94: ~0.30%</li><li>95: ~0.30%</li><li>96: ~0.30%</li><li>97: ~0.30%</li><li>98: ~0.50%</li><li>99: ~0.30%</li><li>100: ~0.30%</li><li>101: ~0.30%</li><li>102: ~0.30%</li><li>103: ~0.30%</li><li>104: ~0.30%</li><li>105: ~0.30%</li><li>106: ~1.20%</li><li>107: ~0.70%</li><li>108: ~0.30%</li><li>109: ~3.20%</li><li>110: ~0.30%</li><li>111: ~2.30%</li><li>112: ~0.30%</li><li>113: ~0.30%</li><li>114: ~0.50%</li><li>115: ~0.50%</li><li>116: ~0.50%</li><li>117: ~0.30%</li><li>118: ~0.30%</li><li>119: ~0.30%</li><li>120: ~0.80%</li><li>121: ~0.30%</li><li>122: ~0.30%</li><li>123: ~0.30%</li><li>124: ~0.30%</li><li>125: ~0.30%</li><li>126: ~0.30%</li><li>127: ~0.30%</li><li>128: ~0.30%</li><li>129: ~0.30%</li><li>130: ~0.30%</li><li>131: ~0.40%</li><li>132: ~0.30%</li><li>133: ~0.30%</li><li>134: ~0.30%</li><li>135: ~0.30%</li><li>136: ~0.30%</li><li>137: ~0.30%</li><li>138: ~0.30%</li><li>139: ~0.30%</li><li>140: ~0.30%</li><li>141: ~0.30%</li><li>142: ~0.40%</li><li>143: ~0.30%</li><li>144: ~0.30%</li><li>145: ~0.30%</li><li>146: ~0.30%</li><li>147: ~0.30%</li><li>148: ~0.30%</li><li>149: ~0.70%</li><li>150: ~0.30%</li><li>151: ~0.30%</li><li>152: ~0.30%</li><li>153: ~1.30%</li><li>154: ~0.30%</li><li>155: ~0.30%</li><li>156: ~0.30%</li><li>157: ~0.30%</li><li>158: ~0.30%</li><li>159: ~1.30%</li><li>160: ~0.30%</li><li>161: ~0.30%</li><li>162: ~0.30%</li><li>163: ~0.30%</li><li>164: ~0.30%</li><li>165: ~0.30%</li><li>166: ~0.30%</li><li>167: ~1.50%</li><li>168: ~0.30%</li><li>169: ~0.30%</li><li>170: ~7.90%</li><li>171: ~0.30%</li><li>172: ~1.00%</li><li>173: ~0.30%</li><li>174: ~0.30%</li><li>175: ~0.30%</li><li>176: ~1.80%</li><li>177: ~0.30%</li><li>178: ~0.50%</li><li>179: ~0.70%</li><li>180: ~0.30%</li><li>181: ~0.30%</li><li>182: ~0.30%</li><li>183: ~0.30%</li><li>184: ~0.30%</li><li>185: ~0.30%</li><li>186: ~0.30%</li><li>187: ~0.30%</li><li>188: ~2.50%</li></ul> |
152
+ * Samples:
153
+ | sentence | label |
154
+ |:-----------------------------------------|:---------------|
155
+ | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
156
+ | <code>科目:コンクリート。名称:免震基礎天端グ��ウト注入。</code> | <code>0</code> |
157
+ | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
158
+ * Loss: <code>sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss</code>
159
+
160
+ ### Training Hyperparameters
161
+ #### Non-Default Hyperparameters
162
+
163
+ - `per_device_train_batch_size`: 512
164
+ - `per_device_eval_batch_size`: 512
165
+ - `learning_rate`: 1e-05
166
+ - `weight_decay`: 0.01
167
+ - `num_train_epochs`: 250
168
+ - `warmup_ratio`: 0.1
169
+ - `fp16`: True
170
+ - `batch_sampler`: group_by_label
171
+
172
+ #### All Hyperparameters
173
+ <details><summary>Click to expand</summary>
174
+
175
+ - `overwrite_output_dir`: False
176
+ - `do_predict`: False
177
+ - `eval_strategy`: no
178
+ - `prediction_loss_only`: True
179
+ - `per_device_train_batch_size`: 512
180
+ - `per_device_eval_batch_size`: 512
181
+ - `per_gpu_train_batch_size`: None
182
+ - `per_gpu_eval_batch_size`: None
183
+ - `gradient_accumulation_steps`: 1
184
+ - `eval_accumulation_steps`: None
185
+ - `torch_empty_cache_steps`: None
186
+ - `learning_rate`: 1e-05
187
+ - `weight_decay`: 0.01
188
+ - `adam_beta1`: 0.9
189
+ - `adam_beta2`: 0.999
190
+ - `adam_epsilon`: 1e-08
191
+ - `max_grad_norm`: 1.0
192
+ - `num_train_epochs`: 250
193
+ - `max_steps`: -1
194
+ - `lr_scheduler_type`: linear
195
+ - `lr_scheduler_kwargs`: {}
196
+ - `warmup_ratio`: 0.1
197
+ - `warmup_steps`: 0
198
+ - `log_level`: passive
199
+ - `log_level_replica`: warning
200
+ - `log_on_each_node`: True
201
+ - `logging_nan_inf_filter`: True
202
+ - `save_safetensors`: True
203
+ - `save_on_each_node`: False
204
+ - `save_only_model`: False
205
+ - `restore_callback_states_from_checkpoint`: False
206
+ - `no_cuda`: False
207
+ - `use_cpu`: False
208
+ - `use_mps_device`: False
209
+ - `seed`: 42
210
+ - `data_seed`: None
211
+ - `jit_mode_eval`: False
212
+ - `use_ipex`: False
213
+ - `bf16`: False
214
+ - `fp16`: True
215
+ - `fp16_opt_level`: O1
216
+ - `half_precision_backend`: auto
217
+ - `bf16_full_eval`: False
218
+ - `fp16_full_eval`: False
219
+ - `tf32`: None
220
+ - `local_rank`: 0
221
+ - `ddp_backend`: None
222
+ - `tpu_num_cores`: None
223
+ - `tpu_metrics_debug`: False
224
+ - `debug`: []
225
+ - `dataloader_drop_last`: False
226
+ - `dataloader_num_workers`: 0
227
+ - `dataloader_prefetch_factor`: None
228
+ - `past_index`: -1
229
+ - `disable_tqdm`: False
230
+ - `remove_unused_columns`: True
231
+ - `label_names`: None
232
+ - `load_best_model_at_end`: False
233
+ - `ignore_data_skip`: False
234
+ - `fsdp`: []
235
+ - `fsdp_min_num_params`: 0
236
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
237
+ - `tp_size`: 0
238
+ - `fsdp_transformer_layer_cls_to_wrap`: None
239
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
240
+ - `deepspeed`: None
241
+ - `label_smoothing_factor`: 0.0
242
+ - `optim`: adamw_torch
243
+ - `optim_args`: None
244
+ - `adafactor`: False
245
+ - `group_by_length`: False
246
+ - `length_column_name`: length
247
+ - `ddp_find_unused_parameters`: None
248
+ - `ddp_bucket_cap_mb`: None
249
+ - `ddp_broadcast_buffers`: False
250
+ - `dataloader_pin_memory`: True
251
+ - `dataloader_persistent_workers`: False
252
+ - `skip_memory_metrics`: True
253
+ - `use_legacy_prediction_loop`: False
254
+ - `push_to_hub`: False
255
+ - `resume_from_checkpoint`: None
256
+ - `hub_model_id`: None
257
+ - `hub_strategy`: every_save
258
+ - `hub_private_repo`: None
259
+ - `hub_always_push`: False
260
+ - `gradient_checkpointing`: False
261
+ - `gradient_checkpointing_kwargs`: None
262
+ - `include_inputs_for_metrics`: False
263
+ - `include_for_metrics`: []
264
+ - `eval_do_concat_batches`: True
265
+ - `fp16_backend`: auto
266
+ - `push_to_hub_model_id`: None
267
+ - `push_to_hub_organization`: None
268
+ - `mp_parameters`:
269
+ - `auto_find_batch_size`: False
270
+ - `full_determinism`: False
271
+ - `torchdynamo`: None
272
+ - `ray_scope`: last
273
+ - `ddp_timeout`: 1800
274
+ - `torch_compile`: False
275
+ - `torch_compile_backend`: None
276
+ - `torch_compile_mode`: None
277
+ - `dispatch_batches`: None
278
+ - `split_batches`: None
279
+ - `include_tokens_per_second`: False
280
+ - `include_num_input_tokens_seen`: False
281
+ - `neftune_noise_alpha`: None
282
+ - `optim_target_modules`: None
283
+ - `batch_eval_metrics`: False
284
+ - `eval_on_start`: False
285
+ - `use_liger_kernel`: False
286
+ - `eval_use_gather_object`: False
287
+ - `average_tokens_across_devices`: False
288
+ - `prompts`: None
289
+ - `batch_sampler`: group_by_label
290
+ - `multi_dataset_batch_sampler`: proportional
291
+
292
+ </details>
293
+
294
+ ### Training Logs
295
+ | Epoch | Step | Training Loss |
296
+ |:--------:|:----:|:-------------:|
297
+ | 0.6667 | 10 | 0.0662 |
298
+ | 1.3333 | 20 | 0.0 |
299
+ | 2.0 | 30 | 0.0 |
300
+ | 2.6667 | 40 | 0.0 |
301
+ | 3.3333 | 50 | 0.0 |
302
+ | 4.0 | 60 | 0.0 |
303
+ | 4.6667 | 70 | 0.0 |
304
+ | 5.3333 | 80 | 0.0 |
305
+ | 6.0 | 90 | 0.0 |
306
+ | 6.6667 | 100 | 0.0 |
307
+ | 7.3333 | 110 | 0.0 |
308
+ | 8.0 | 120 | 0.0 |
309
+ | 8.6667 | 130 | 0.0 |
310
+ | 9.3333 | 140 | 0.0 |
311
+ | 10.0 | 150 | 0.0 |
312
+ | 10.0 | 10 | 2.7711 |
313
+ | 20.0 | 20 | 1.2115 |
314
+ | 30.0 | 30 | 0.3753 |
315
+ | 40.0 | 40 | 0.1646 |
316
+ | 50.0 | 50 | 0.0876 |
317
+ | 60.0 | 60 | 0.0559 |
318
+ | 70.0 | 70 | 0.0344 |
319
+ | 80.0 | 80 | 0.0262 |
320
+ | 90.0 | 90 | 0.0194 |
321
+ | 100.0 | 100 | 0.0218 |
322
+ | 110.0 | 110 | 0.0214 |
323
+ | 120.0 | 120 | 0.014 |
324
+ | 130.0 | 130 | 0.0231 |
325
+ | 140.0 | 140 | 0.0132 |
326
+ | 150.0 | 150 | 0.0146 |
327
+ | 3.7576 | 100 | 0.0701 |
328
+ | 7.7576 | 200 | 0.0747 |
329
+ | 11.7576 | 300 | 0.0709 |
330
+ | 15.7576 | 400 | 0.0689 |
331
+ | 19.7576 | 500 | 0.0622 |
332
+ | 23.7576 | 600 | 0.0639 |
333
+ | 27.7576 | 700 | 0.063 |
334
+ | 31.7576 | 800 | 0.0605 |
335
+ | 35.7576 | 900 | 0.061 |
336
+ | 39.7576 | 1000 | 0.0602 |
337
+ | 43.7576 | 1100 | 0.0609 |
338
+ | 47.7576 | 1200 | 0.0596 |
339
+ | 51.7576 | 1300 | 0.0568 |
340
+ | 55.7576 | 1400 | 0.0593 |
341
+ | 59.7576 | 1500 | 0.058 |
342
+ | 63.7576 | 1600 | 0.0613 |
343
+ | 67.7576 | 1700 | 0.0515 |
344
+ | 71.7576 | 1800 | 0.0511 |
345
+ | 75.7576 | 1900 | 0.0538 |
346
+ | 79.7576 | 2000 | 0.0559 |
347
+ | 83.7576 | 2100 | 0.0482 |
348
+ | 87.7576 | 2200 | 0.0511 |
349
+ | 91.7576 | 2300 | 0.0553 |
350
+ | 95.7576 | 2400 | 0.0522 |
351
+ | 99.7576 | 2500 | 0.0534 |
352
+ | 103.7576 | 2600 | 0.0477 |
353
+ | 107.7576 | 2700 | 0.052 |
354
+ | 111.7576 | 2800 | 0.0518 |
355
+ | 115.7576 | 2900 | 0.047 |
356
+ | 119.7576 | 3000 | 0.0503 |
357
+ | 123.7576 | 3100 | 0.0494 |
358
+ | 127.7576 | 3200 | 0.0488 |
359
+ | 131.7576 | 3300 | 0.052 |
360
+ | 135.7576 | 3400 | 0.0459 |
361
+ | 139.7576 | 3500 | 0.0467 |
362
+ | 143.7576 | 3600 | 0.0493 |
363
+ | 147.7576 | 3700 | 0.0453 |
364
+ | 151.7576 | 3800 | 0.0457 |
365
+ | 155.7576 | 3900 | 0.0462 |
366
+ | 159.7576 | 4000 | 0.0451 |
367
+ | 163.7576 | 4100 | 0.0446 |
368
+ | 167.7576 | 4200 | 0.0438 |
369
+ | 171.7576 | 4300 | 0.0398 |
370
+ | 175.7576 | 4400 | 0.0414 |
371
+ | 179.7576 | 4500 | 0.045 |
372
+ | 183.7576 | 4600 | 0.0448 |
373
+ | 187.7576 | 4700 | 0.0426 |
374
+ | 191.7576 | 4800 | 0.0427 |
375
+ | 195.7576 | 4900 | 0.0434 |
376
+ | 199.7576 | 5000 | 0.039 |
377
+ | 203.7576 | 5100 | 0.0381 |
378
+ | 207.7576 | 5200 | 0.0434 |
379
+ | 211.7576 | 5300 | 0.041 |
380
+ | 215.7576 | 5400 | 0.0463 |
381
+ | 219.7576 | 5500 | 0.0386 |
382
+ | 223.7576 | 5600 | 0.0453 |
383
+ | 227.7576 | 5700 | 0.0412 |
384
+ | 231.7576 | 5800 | 0.0373 |
385
+ | 235.7576 | 5900 | 0.0393 |
386
+ | 239.7576 | 6000 | 0.0362 |
387
+ | 243.7576 | 6100 | 0.0363 |
388
+ | 247.7576 | 6200 | 0.0372 |
389
+
390
+
391
+ ### Framework Versions
392
+ - Python: 3.11.12
393
+ - Sentence Transformers: 3.4.1
394
+ - Transformers: 4.50.3
395
+ - PyTorch: 2.6.0+cu124
396
+ - Accelerate: 1.5.2
397
+ - Datasets: 3.5.0
398
+ - Tokenizers: 0.21.1
399
+
400
+ ## Citation
401
+
402
+ ### BibTeX
403
+
404
+ #### Sentence Transformers
405
+ ```bibtex
406
+ @inproceedings{reimers-2019-sentence-bert,
407
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
408
+ author = "Reimers, Nils and Gurevych, Iryna",
409
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
410
+ month = "11",
411
+ year = "2019",
412
+ publisher = "Association for Computational Linguistics",
413
+ url = "https://arxiv.org/abs/1908.10084",
414
+ }
415
+ ```
416
+
417
+ #### CustomBatchAllTripletLoss
418
+ ```bibtex
419
+ @misc{hermans2017defense,
420
+ title={In Defense of the Triplet Loss for Person Re-Identification},
421
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
422
+ year={2017},
423
+ eprint={1703.07737},
424
+ archivePrefix={arXiv},
425
+ primaryClass={cs.CV}
426
+ }
427
+ ```
428
+
429
+ <!--
430
+ ## Glossary
431
+
432
+ *Clearly define terms in order to be accessible across audiences.*
433
+ -->
434
+
435
+ <!--
436
+ ## Model Card Authors
437
+
438
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
439
+ -->
440
+
441
+ <!--
442
+ ## Model Card Contact
443
+
444
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
445
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.51.1",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 32768
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.1",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6e476a706ccc7c5e60d0adbe489e86eec52e25856f73e94488bcd413b87a16e
3
+ size 444851048
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "do_subword_tokenize": true,
48
+ "do_word_tokenize": true,
49
+ "extra_special_tokens": {},
50
+ "jumanpp_kwargs": null,
51
+ "mask_token": "[MASK]",
52
+ "mecab_kwargs": {
53
+ "mecab_dic": "unidic_lite"
54
+ },
55
+ "model_max_length": 512,
56
+ "never_split": null,
57
+ "pad_token": "[PAD]",
58
+ "sep_token": "[SEP]",
59
+ "subword_tokenizer_type": "wordpiece",
60
+ "sudachi_kwargs": null,
61
+ "tokenizer_class": "BertJapaneseTokenizer",
62
+ "unk_token": "[UNK]",
63
+ "word_tokenizer_type": "mecab"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff