--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1546 - loss:DualMarginContrastiveLoss - loss:CustomBatchAllTripletLoss widget: - source_sentence: 科目:塗装。名称:CL塗り。 sentences: - 科目:建具。名称:SKW-#窓+扉。 - 科目:塗装。名称:VP塗り。 - 科目:建具。名称:SSD-#窓+扉。 - source_sentence: 科目:塗装。名称:EP塗り。 sentences: - 科目:建具。名称:HAW-#窓。 - 科目:建具。名称:SLW-#間仕切。 - 科目:塗装。名称:OS塗り。 - source_sentence: 科目:塗装。名称:FSP塗り。 sentences: - 科目:建具。名称:SP-#間仕切。 - 科目:建具。名称:XD-#扉。 - 科目:塗装。名称:WP塗り。 - source_sentence: 科目:建具。名称:ACW-#窓。 sentences: - 科目:建具。名称:GD-#窓+扉。 - 科目:建具。名称:GD-#用窓。 - 科目:建具。名称:WAW-#扉。 - source_sentence: 科目:建具。名称:GCW-#窓。 sentences: - 科目:建具。名称:STW-#窓。 - 科目:建具。名称:TDW-#窓+扉。 - 科目:建具。名称:AW-#窓。 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v0_9_13") # Run inference sentences = [ '科目:建具。名称:GCW-#窓。', '科目:建具。名称:AW-#窓。', '科目:建具。名称:STW-#窓。', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,546 training samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence | label | |:-----------------------------------------|:---------------| | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | * Loss: sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 512 - `per_device_eval_batch_size`: 512 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 250 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: group_by_label #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 512 - `per_device_eval_batch_size`: 512 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 250 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: group_by_label - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | |:--------:|:----:|:-------------:| | 2.5 | 10 | 34.4458 | | 5.0 | 20 | 9.5341 | | 7.5 | 30 | 2.0511 | | 10.0 | 40 | 1.5025 | | 12.5 | 50 | 1.4347 | | 15.0 | 60 | 1.1549 | | 17.5 | 70 | 1.2308 | | 20.0 | 80 | 1.0908 | | 22.5 | 90 | 1.1238 | | 25.0 | 100 | 0.9793 | | 2.5 | 10 | 1.1269 | | 5.0 | 20 | 0.8895 | | 7.5 | 30 | 0.8496 | | 10.0 | 40 | 0.6124 | | 12.5 | 50 | 0.5591 | | 15.0 | 60 | 0.4262 | | 17.5 | 70 | 0.3892 | | 20.0 | 80 | 0.3309 | | 22.5 | 90 | 0.3195 | | 25.0 | 100 | 0.0781 | | 7.5455 | 200 | 0.072 | | 11.4242 | 300 | 0.073 | | 15.3030 | 400 | 0.0715 | | 19.1818 | 500 | 0.069 | | 23.0606 | 600 | 0.0682 | | 26.7273 | 700 | 0.0659 | | 30.6061 | 800 | 0.0628 | | 34.4848 | 900 | 0.0618 | | 38.3636 | 1000 | 0.0639 | | 42.2424 | 1100 | 0.0635 | | 46.1212 | 1200 | 0.0635 | | 49.7879 | 1300 | 0.0627 | | 53.6667 | 1400 | 0.0593 | | 57.5455 | 1500 | 0.0605 | | 61.4242 | 1600 | 0.055 | | 65.3030 | 1700 | 0.0556 | | 69.1818 | 1800 | 0.0589 | | 73.0606 | 1900 | 0.0585 | | 76.7273 | 2000 | 0.0568 | | 80.6061 | 2100 | 0.0521 | | 84.4848 | 2200 | 0.0559 | | 88.3636 | 2300 | 0.0508 | | 92.2424 | 2400 | 0.051 | | 96.1212 | 2500 | 0.0532 | | 99.7879 | 2600 | 0.0545 | | 103.6667 | 2700 | 0.0532 | | 107.5455 | 2800 | 0.0542 | | 111.4242 | 2900 | 0.052 | | 115.3030 | 3000 | 0.0497 | | 119.1818 | 3100 | 0.0486 | | 123.0606 | 3200 | 0.0562 | | 126.7273 | 3300 | 0.0544 | | 130.6061 | 3400 | 0.0516 | | 134.4848 | 3500 | 0.0491 | | 138.3636 | 3600 | 0.0578 | | 142.2424 | 3700 | 0.0508 | | 146.1212 | 3800 | 0.0533 | | 149.7879 | 3900 | 0.0487 | | 153.6667 | 4000 | 0.045 | | 157.5455 | 4100 | 0.0454 | | 161.4242 | 4200 | 0.0497 | | 165.3030 | 4300 | 0.0466 | | 169.1818 | 4400 | 0.045 | | 173.0606 | 4500 | 0.0477 | | 176.7273 | 4600 | 0.0421 | | 180.6061 | 4700 | 0.051 | | 184.4848 | 4800 | 0.0389 | | 188.3636 | 4900 | 0.0449 | | 192.2424 | 5000 | 0.0425 | | 196.1212 | 5100 | 0.0456 | | 199.7879 | 5200 | 0.0465 | | 203.6667 | 5300 | 0.0435 | | 207.5455 | 5400 | 0.04 | | 211.4242 | 5500 | 0.0405 | | 215.3030 | 5600 | 0.0432 | | 219.1818 | 5700 | 0.0394 | | 223.0606 | 5800 | 0.0511 | | 226.7273 | 5900 | 0.0462 | | 230.6061 | 6000 | 0.0397 | | 234.4848 | 6100 | 0.0413 | | 238.3636 | 6200 | 0.0443 | | 242.2424 | 6300 | 0.0377 | | 246.1212 | 6400 | 0.0437 | | 249.7879 | 6500 | 0.0407 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.50.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CustomBatchAllTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```