---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:72
- loss:BatchAllTripletLoss
base_model: cl-nagoya/sup-simcse-ja-base
widget:
- source_sentence: 打放し型枠(B種)
sentences:
- 埋込み(B種)(手間)
- 埋込み(C種)(手間)
- 盛土A種
- source_sentence: 埋込み[B種]
sentences:
- 打放し型枠(A種)
- 盛土(C種)(手間)
- 埋戻し[C種]
- source_sentence: 盛土[C種]
sentences:
- 埋込み[C種]
- 盛土(A種)
- 盛土[A種]
- source_sentence: 埋戻し[A種]
sentences:
- 打放し型枠C種
- 打放し型枠(C種)(損料・手間)
- 盛土[B種]
- source_sentence: 埋込み(B種)(損料・手間)
sentences:
- 埋戻し(A種)(損料)
- 埋戻し(C種)(損料・手間)
- 埋戻し(B種)(手間)
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on cl-nagoya/sup-simcse-ja-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_11")
# Run inference
sentences = [
'埋込み(B種)(損料・手間)',
'埋戻し(A種)(損料)',
'埋戻し(B種)(手間)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 72 training samples
* Columns: sentence
and label
* Approximate statistics based on the first 72 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details |
科目:コンクリート。名称:免震基礎天端グラウト注入。
| 0
|
| 科目:コンクリート。名称:免震基礎天端グラウト注入。
| 0
|
| 科目:コンクリート。名称:免震基礎天端グラウト注入。
| 0
|
* Loss: [BatchAllTripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 250
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: group_by_label
#### All Hyperparameters