--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:72 - loss:BatchAllTripletLoss base_model: cl-nagoya/sup-simcse-ja-base widget: - source_sentence: 打放し型枠(B種) sentences: - 埋込み(B種)(手間) - 埋込み(C種)(手間) - 盛土A種 - source_sentence: 埋込み[B種] sentences: - 打放し型枠(A種) - 盛土(C種)(手間) - 埋戻し[C種] - source_sentence: 盛土[C種] sentences: - 埋込み[C種] - 盛土(A種) - 盛土[A種] - source_sentence: 埋戻し[A種] sentences: - 打放し型枠C種 - 打放し型枠(C種)(損料・手間) - 盛土[B種] - source_sentence: 埋込み(B種)(損料・手間) sentences: - 埋戻し(A種)(損料) - 埋戻し(C種)(損料・手間) - 埋戻し(B種)(手間) pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on cl-nagoya/sup-simcse-ja-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_11") # Run inference sentences = [ '埋込み(B種)(損料・手間)', '埋戻し(A種)(損料)', '埋戻し(B種)(手間)', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 72 training samples * Columns: sentence and label * Approximate statistics based on the first 72 samples: | | sentence | label | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence | label | |:-----------------------------------------|:---------------| | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | * Loss: [BatchAllTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 512 - `per_device_eval_batch_size`: 512 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 250 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: group_by_label #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 512 - `per_device_eval_batch_size`: 512 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 250 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: group_by_label - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:--------:|:----:|:-------------:| | 10.0 | 10 | 1.6508 | | 20.0 | 20 | 1.2554 | | 30.0 | 30 | 0.8495 | | 40.0 | 40 | 0.7182 | | 50.0 | 50 | 0.6614 | | 60.0 | 60 | 0.575 | | 70.0 | 70 | 0.5027 | | 80.0 | 80 | 0.32 | | 90.0 | 90 | 0.1543 | | 100.0 | 100 | 0.0102 | | 110.0 | 110 | 0.012 | | 120.0 | 120 | 0.1164 | | 130.0 | 130 | 0.0 | | 140.0 | 140 | 0.0 | | 150.0 | 150 | 0.0 | | 160.0 | 160 | 0.0157 | | 170.0 | 170 | 0.0794 | | 180.0 | 180 | 0.0 | | 190.0 | 190 | 0.0 | | 200.0 | 200 | 0.0141 | | 210.0 | 210 | 0.0 | | 220.0 | 220 | 0.0 | | 230.0 | 230 | 0.1115 | | 240.0 | 240 | 0.0 | | 250.0 | 250 | 0.0 | | 260.0 | 260 | 0.0 | | 270.0 | 270 | 0.0 | | 280.0 | 280 | 0.0 | | 290.0 | 290 | 0.0 | | 300.0 | 300 | 0.0 | | 310.0 | 310 | 0.0 | | 320.0 | 320 | 0.0 | | 330.0 | 330 | 0.0 | | 340.0 | 340 | 0.0 | | 350.0 | 350 | 0.0 | | 360.0 | 360 | 0.0197 | | 370.0 | 370 | 0.0649 | | 380.0 | 380 | 0.0 | | 390.0 | 390 | 0.0 | | 400.0 | 400 | 0.0 | | 410.0 | 410 | 0.0 | | 420.0 | 420 | 0.0 | | 430.0 | 430 | 0.0 | | 440.0 | 440 | 0.0 | | 450.0 | 450 | 0.0 | | 460.0 | 460 | 0.0 | | 470.0 | 470 | 0.0 | | 480.0 | 480 | 0.0 | | 490.0 | 490 | 0.0 | | 500.0 | 500 | 0.0 | | 3.1842 | 100 | 0.6748 | | 6.3684 | 200 | 0.5883 | | 9.5526 | 300 | 0.5815 | | 12.7368 | 400 | 0.5338 | | 16.1053 | 500 | 0.5498 | | 19.2895 | 600 | 0.5359 | | 22.4737 | 700 | 0.5359 | | 25.6579 | 800 | 0.4893 | | 29.0263 | 900 | 0.4665 | | 32.2105 | 1000 | 0.4205 | | 35.3947 | 1100 | 0.4383 | | 38.5789 | 1200 | 0.4552 | | 41.7632 | 1300 | 0.4003 | | 45.1316 | 1400 | 0.3816 | | 48.3158 | 1500 | 0.3744 | | 51.5 | 1600 | 0.3504 | | 54.6842 | 1700 | 0.359 | | 58.0526 | 1800 | 0.3019 | | 61.2368 | 1900 | 0.3109 | | 64.4211 | 2000 | 0.3151 | | 67.6053 | 2100 | 0.3292 | | 70.7895 | 2200 | 0.2813 | | 74.1579 | 2300 | 0.2697 | | 77.3421 | 2400 | 0.1975 | | 80.5263 | 2500 | 0.2492 | | 83.7105 | 2600 | 0.2608 | | 87.0789 | 2700 | 0.2401 | | 90.2632 | 2800 | 0.2265 | | 93.4474 | 2900 | 0.2032 | | 96.6316 | 3000 | 0.2368 | | 99.8158 | 3100 | 0.2066 | | 103.1842 | 3200 | 0.1558 | | 106.3684 | 3300 | 0.2029 | | 109.5526 | 3400 | 0.244 | | 112.7368 | 3500 | 0.1894 | | 116.1053 | 3600 | 0.193 | | 119.2895 | 3700 | 0.1769 | | 122.4737 | 3800 | 0.1821 | | 125.6579 | 3900 | 0.0912 | | 129.0263 | 4000 | 0.1834 | | 132.2105 | 4100 | 0.1391 | | 135.3947 | 4200 | 0.1718 | | 138.5789 | 4300 | 0.1585 | | 141.7632 | 4400 | 0.1829 | | 145.1316 | 4500 | 0.1246 | | 148.3158 | 4600 | 0.1327 | | 151.5 | 4700 | 0.1396 | | 154.6842 | 4800 | 0.1028 | | 158.0526 | 4900 | 0.0907 | | 161.2368 | 5000 | 0.1179 | | 164.4211 | 5100 | 0.1496 | | 167.6053 | 5200 | 0.1156 | | 170.7895 | 5300 | 0.1148 | | 174.1579 | 5400 | 0.1275 | | 177.3421 | 5500 | 0.1354 | | 180.5263 | 5600 | 0.1334 | | 183.7105 | 5700 | 0.0874 | | 187.0789 | 5800 | 0.0922 | | 190.2632 | 5900 | 0.1109 | | 193.4474 | 6000 | 0.0708 | | 196.6316 | 6100 | 0.0943 | | 199.8158 | 6200 | 0.1164 | | 203.1842 | 6300 | 0.0785 | | 206.3684 | 6400 | 0.0853 | | 209.5526 | 6500 | 0.0674 | | 212.7368 | 6600 | 0.1009 | | 216.1053 | 6700 | 0.0846 | | 219.2895 | 6800 | 0.078 | | 222.4737 | 6900 | 0.0958 | | 225.6579 | 7000 | 0.0811 | | 229.0263 | 7100 | 0.0452 | | 232.2105 | 7200 | 0.0705 | | 235.3947 | 7300 | 0.0664 | | 238.5789 | 7400 | 0.0501 | | 241.7632 | 7500 | 0.0696 | | 245.1316 | 7600 | 0.0736 | | 248.3158 | 7700 | 0.08 |
### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.50.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### BatchAllTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```