vumichien commited on
Commit
4fc0ac9
·
verified ·
1 Parent(s): 2f85ad6

Add new SentenceTransformer model with an openvino backend

Browse files

Hello!

*This pull request has been automatically generated from the [`push_to_hub`](https://sbert.net/docs/package_reference/sentence_transformer/SentenceTransformer.html#sentence_transformers.SentenceTransformer.push_to_hub) method from the Sentence Transformers library.*

## Full Model Architecture:
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: OVModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Tip:
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
```python
from sentence_transformers import SentenceTransformer

# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_11",
revision=f"refs/pr/{pr_number}",
backend="openvino",
)

# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)

similarities = model.similarity(embeddings, embeddings)
print(similarities)
```

1_Pooling/config.json CHANGED
@@ -1,10 +1,10 @@
1
- {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": true,
4
- "pooling_mode_mean_tokens": false,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false,
9
- "include_prompt": true
10
  }
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
  }
README.md CHANGED
@@ -1,483 +1,483 @@
1
- ---
2
- tags:
3
- - sentence-transformers
4
- - sentence-similarity
5
- - feature-extraction
6
- - generated_from_trainer
7
- - dataset_size:72
8
- - loss:BatchAllTripletLoss
9
- base_model: cl-nagoya/sup-simcse-ja-base
10
- widget:
11
- - source_sentence: 打放し型枠(B種)
12
- sentences:
13
- - 埋込み(B種)(手間)
14
- - 埋込み(C種)(手間)
15
- - 盛土A種
16
- - source_sentence: 埋込み[B種]
17
- sentences:
18
- - 打放し型枠(A種)
19
- - 盛土(C種)(手間)
20
- - 埋戻し[C種]
21
- - source_sentence: 盛土[C種]
22
- sentences:
23
- - 埋込み[C種]
24
- - 盛土(A種)
25
- - 盛土[A種]
26
- - source_sentence: 埋戻し[A種]
27
- sentences:
28
- - 打放し型枠C種
29
- - 打放し型枠(C種)(損料・手間)
30
- - 盛土[B種]
31
- - source_sentence: 埋込み(B種)(損料・手間)
32
- sentences:
33
- - 埋戻し(A種)(損料)
34
- - 埋戻し(C種)(損料・手間)
35
- - 埋戻し(B種)(手間)
36
- pipeline_tag: sentence-similarity
37
- library_name: sentence-transformers
38
- ---
39
-
40
- # SentenceTransformer based on cl-nagoya/sup-simcse-ja-base
41
-
42
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
-
44
- ## Model Details
45
-
46
- ### Model Description
47
- - **Model Type:** Sentence Transformer
48
- - **Base model:** [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base) <!-- at revision d7315d93baf2c20fffa2b6845330049963509f79 -->
49
- - **Maximum Sequence Length:** 512 tokens
50
- - **Output Dimensionality:** 768 dimensions
51
- - **Similarity Function:** Cosine Similarity
52
- <!-- - **Training Dataset:** Unknown -->
53
- <!-- - **Language:** Unknown -->
54
- <!-- - **License:** Unknown -->
55
-
56
- ### Model Sources
57
-
58
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
-
62
- ### Full Model Architecture
63
-
64
- ```
65
- SentenceTransformer(
66
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
- )
69
- ```
70
-
71
- ## Usage
72
-
73
- ### Direct Usage (Sentence Transformers)
74
-
75
- First install the Sentence Transformers library:
76
-
77
- ```bash
78
- pip install -U sentence-transformers
79
- ```
80
-
81
- Then you can load this model and run inference.
82
- ```python
83
- from sentence_transformers import SentenceTransformer
84
-
85
- # Download from the 🤗 Hub
86
- model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_11")
87
- # Run inference
88
- sentences = [
89
- '埋込み(B種)(損料・手間)',
90
- '埋戻し(A種)(損料)',
91
- '埋戻し(B種)(手間)',
92
- ]
93
- embeddings = model.encode(sentences)
94
- print(embeddings.shape)
95
- # [3, 768]
96
-
97
- # Get the similarity scores for the embeddings
98
- similarities = model.similarity(embeddings, embeddings)
99
- print(similarities.shape)
100
- # [3, 3]
101
- ```
102
-
103
- <!--
104
- ### Direct Usage (Transformers)
105
-
106
- <details><summary>Click to see the direct usage in Transformers</summary>
107
-
108
- </details>
109
- -->
110
-
111
- <!--
112
- ### Downstream Usage (Sentence Transformers)
113
-
114
- You can finetune this model on your own dataset.
115
-
116
- <details><summary>Click to expand</summary>
117
-
118
- </details>
119
- -->
120
-
121
- <!--
122
- ### Out-of-Scope Use
123
-
124
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
- -->
126
-
127
- <!--
128
- ## Bias, Risks and Limitations
129
-
130
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
- -->
132
-
133
- <!--
134
- ### Recommendations
135
-
136
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
- -->
138
-
139
- ## Training Details
140
-
141
- ### Training Dataset
142
-
143
- #### Unnamed Dataset
144
-
145
- * Size: 72 training samples
146
- * Columns: <code>sentence</code> and <code>label</code>
147
- * Approximate statistics based on the first 72 samples:
148
- | | sentence | label |
149
- |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
150
- | type | string | int |
151
- | details | <ul><li>min: 11 tokens</li><li>mean: 16.21 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>0: ~0.50%</li><li>1: ~0.50%</li><li>2: ~0.50%</li><li>3: ~0.50%</li><li>4: ~0.50%</li><li>5: ~0.50%</li><li>6: ~0.50%</li><li>7: ~0.50%</li><li>8: ~0.50%</li><li>9: ~0.50%</li><li>10: ~0.50%</li><li>11: ~0.50%</li><li>12: ~0.50%</li><li>13: ~0.50%</li><li>14: ~0.50%</li><li>15: ~0.50%</li><li>16: ~0.50%</li><li>17: ~0.50%</li><li>18: ~0.50%</li><li>19: ~0.50%</li><li>20: ~0.50%</li><li>21: ~0.50%</li><li>22: ~0.50%</li><li>23: ~0.50%</li><li>24: ~0.50%</li><li>25: ~0.50%</li><li>26: ~0.50%</li><li>27: ~0.50%</li><li>28: ~0.50%</li><li>29: ~0.50%</li><li>30: ~0.50%</li><li>31: ~0.50%</li><li>32: ~0.50%</li><li>33: ~0.50%</li><li>34: ~0.50%</li><li>35: ~0.50%</li><li>36: ~0.50%</li><li>37: ~0.50%</li><li>38: ~0.50%</li><li>39: ~0.50%</li><li>40: ~0.50%</li><li>41: ~0.50%</li><li>42: ~0.50%</li><li>43: ~0.50%</li><li>44: ~0.60%</li><li>45: ~0.70%</li><li>46: ~0.50%</li><li>47: ~0.50%</li><li>48: ~0.50%</li><li>49: ~0.50%</li><li>50: ~0.50%</li><li>51: ~0.50%</li><li>52: ~0.50%</li><li>53: ~0.50%</li><li>54: ~0.50%</li><li>55: ~0.50%</li><li>56: ~0.50%</li><li>57: ~0.80%</li><li>58: ~0.50%</li><li>59: ~0.50%</li><li>60: ~0.50%</li><li>61: ~0.50%</li><li>62: ~0.50%</li><li>63: ~0.50%</li><li>64: ~0.50%</li><li>65: ~0.50%</li><li>66: ~0.50%</li><li>67: ~0.50%</li><li>68: ~0.50%</li><li>69: ~0.50%</li><li>70: ~0.50%</li><li>71: ~0.50%</li><li>72: ~0.50%</li><li>73: ~0.50%</li><li>74: ~0.50%</li><li>75: ~0.50%</li><li>76: ~0.50%</li><li>77: ~0.50%</li><li>78: ~0.50%</li><li>79: ~0.50%</li><li>80: ~0.50%</li><li>81: ~0.50%</li><li>82: ~0.50%</li><li>83: ~0.50%</li><li>84: ~0.50%</li><li>85: ~0.50%</li><li>86: ~0.50%</li><li>87: ~0.50%</li><li>88: ~0.60%</li><li>89: ~0.50%</li><li>90: ~0.50%</li><li>91: ~0.50%</li><li>92: ~0.50%</li><li>93: ~0.50%</li><li>94: ~0.50%</li><li>95: ~1.20%</li><li>96: ~1.70%</li><li>97: ~3.90%</li><li>98: ~0.50%</li><li>99: ~0.50%</li><li>100: ~0.50%</li><li>101: ~0.60%</li><li>102: ~0.50%</li><li>103: ~0.50%</li><li>104: ~0.50%</li><li>105: ~0.50%</li><li>106: ~0.50%</li><li>107: ~1.20%</li><li>108: ~0.50%</li><li>109: ~0.50%</li><li>110: ~0.50%</li><li>111: ~0.50%</li><li>112: ~0.50%</li><li>113: ~0.50%</li><li>114: ~0.50%</li><li>115: ~0.50%</li><li>116: ~0.50%</li><li>117: ~0.50%</li><li>118: ~0.50%</li><li>119: ~0.50%</li><li>120: ~0.50%</li><li>121: ~0.50%</li><li>122: ~0.50%</li><li>123: ~0.50%</li><li>124: ~0.50%</li><li>125: ~0.50%</li><li>126: ~0.50%</li><li>127: ~0.50%</li><li>128: ~0.50%</li><li>129: ~0.50%</li><li>130: ~0.50%</li><li>131: ~0.50%</li><li>132: ~0.50%</li><li>133: ~0.50%</li><li>134: ~0.50%</li><li>135: ~0.50%</li><li>136: ~0.50%</li><li>137: ~0.50%</li><li>138: ~0.50%</li><li>139: ~0.50%</li><li>140: ~0.50%</li><li>141: ~0.50%</li><li>142: ~0.50%</li><li>143: ~0.50%</li><li>144: ~0.50%</li><li>145: ~0.50%</li><li>146: ~0.70%</li><li>147: ~0.50%</li><li>148: ~3.10%</li><li>149: ~0.50%</li><li>150: ~2.30%</li><li>151: ~0.50%</li><li>152: ~0.50%</li><li>153: ~0.50%</li><li>154: ~0.50%</li><li>155: ~0.50%</li><li>156: ~0.50%</li><li>157: ~0.50%</li><li>158: ~0.50%</li><li>159: ~0.50%</li><li>160: ~0.50%</li><li>161: ~0.50%</li><li>162: ~0.50%</li><li>163: ~0.50%</li><li>164: ~0.50%</li><li>165: ~0.50%</li><li>166: ~0.50%</li><li>167: ~0.50%</li><li>168: ~0.50%</li><li>169: ~0.50%</li><li>170: ~0.50%</li><li>171: ~0.50%</li><li>172: ~0.50%</li><li>173: ~0.50%</li><li>174: ~0.50%</li><li>175: ~0.50%</li><li>176: ~0.50%</li><li>177: ~0.10%</li></ul> |
152
- * Samples:
153
- | sentence | label |
154
- |:-----------------------------------------|:---------------|
155
- | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
156
- | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
157
- | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
158
- * Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
159
-
160
- ### Training Hyperparameters
161
- #### Non-Default Hyperparameters
162
-
163
- - `per_device_train_batch_size`: 512
164
- - `per_device_eval_batch_size`: 512
165
- - `learning_rate`: 1e-05
166
- - `weight_decay`: 0.01
167
- - `num_train_epochs`: 250
168
- - `warmup_ratio`: 0.1
169
- - `fp16`: True
170
- - `batch_sampler`: group_by_label
171
-
172
- #### All Hyperparameters
173
- <details><summary>Click to expand</summary>
174
-
175
- - `overwrite_output_dir`: False
176
- - `do_predict`: False
177
- - `eval_strategy`: no
178
- - `prediction_loss_only`: True
179
- - `per_device_train_batch_size`: 512
180
- - `per_device_eval_batch_size`: 512
181
- - `per_gpu_train_batch_size`: None
182
- - `per_gpu_eval_batch_size`: None
183
- - `gradient_accumulation_steps`: 1
184
- - `eval_accumulation_steps`: None
185
- - `torch_empty_cache_steps`: None
186
- - `learning_rate`: 1e-05
187
- - `weight_decay`: 0.01
188
- - `adam_beta1`: 0.9
189
- - `adam_beta2`: 0.999
190
- - `adam_epsilon`: 1e-08
191
- - `max_grad_norm`: 1.0
192
- - `num_train_epochs`: 250
193
- - `max_steps`: -1
194
- - `lr_scheduler_type`: linear
195
- - `lr_scheduler_kwargs`: {}
196
- - `warmup_ratio`: 0.1
197
- - `warmup_steps`: 0
198
- - `log_level`: passive
199
- - `log_level_replica`: warning
200
- - `log_on_each_node`: True
201
- - `logging_nan_inf_filter`: True
202
- - `save_safetensors`: True
203
- - `save_on_each_node`: False
204
- - `save_only_model`: False
205
- - `restore_callback_states_from_checkpoint`: False
206
- - `no_cuda`: False
207
- - `use_cpu`: False
208
- - `use_mps_device`: False
209
- - `seed`: 42
210
- - `data_seed`: None
211
- - `jit_mode_eval`: False
212
- - `use_ipex`: False
213
- - `bf16`: False
214
- - `fp16`: True
215
- - `fp16_opt_level`: O1
216
- - `half_precision_backend`: auto
217
- - `bf16_full_eval`: False
218
- - `fp16_full_eval`: False
219
- - `tf32`: None
220
- - `local_rank`: 0
221
- - `ddp_backend`: None
222
- - `tpu_num_cores`: None
223
- - `tpu_metrics_debug`: False
224
- - `debug`: []
225
- - `dataloader_drop_last`: False
226
- - `dataloader_num_workers`: 0
227
- - `dataloader_prefetch_factor`: None
228
- - `past_index`: -1
229
- - `disable_tqdm`: False
230
- - `remove_unused_columns`: True
231
- - `label_names`: None
232
- - `load_best_model_at_end`: False
233
- - `ignore_data_skip`: False
234
- - `fsdp`: []
235
- - `fsdp_min_num_params`: 0
236
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
237
- - `tp_size`: 0
238
- - `fsdp_transformer_layer_cls_to_wrap`: None
239
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
240
- - `deepspeed`: None
241
- - `label_smoothing_factor`: 0.0
242
- - `optim`: adamw_torch
243
- - `optim_args`: None
244
- - `adafactor`: False
245
- - `group_by_length`: False
246
- - `length_column_name`: length
247
- - `ddp_find_unused_parameters`: None
248
- - `ddp_bucket_cap_mb`: None
249
- - `ddp_broadcast_buffers`: False
250
- - `dataloader_pin_memory`: True
251
- - `dataloader_persistent_workers`: False
252
- - `skip_memory_metrics`: True
253
- - `use_legacy_prediction_loop`: False
254
- - `push_to_hub`: False
255
- - `resume_from_checkpoint`: None
256
- - `hub_model_id`: None
257
- - `hub_strategy`: every_save
258
- - `hub_private_repo`: None
259
- - `hub_always_push`: False
260
- - `gradient_checkpointing`: False
261
- - `gradient_checkpointing_kwargs`: None
262
- - `include_inputs_for_metrics`: False
263
- - `include_for_metrics`: []
264
- - `eval_do_concat_batches`: True
265
- - `fp16_backend`: auto
266
- - `push_to_hub_model_id`: None
267
- - `push_to_hub_organization`: None
268
- - `mp_parameters`:
269
- - `auto_find_batch_size`: False
270
- - `full_determinism`: False
271
- - `torchdynamo`: None
272
- - `ray_scope`: last
273
- - `ddp_timeout`: 1800
274
- - `torch_compile`: False
275
- - `torch_compile_backend`: None
276
- - `torch_compile_mode`: None
277
- - `dispatch_batches`: None
278
- - `split_batches`: None
279
- - `include_tokens_per_second`: False
280
- - `include_num_input_tokens_seen`: False
281
- - `neftune_noise_alpha`: None
282
- - `optim_target_modules`: None
283
- - `batch_eval_metrics`: False
284
- - `eval_on_start`: False
285
- - `use_liger_kernel`: False
286
- - `eval_use_gather_object`: False
287
- - `average_tokens_across_devices`: False
288
- - `prompts`: None
289
- - `batch_sampler`: group_by_label
290
- - `multi_dataset_batch_sampler`: proportional
291
-
292
- </details>
293
-
294
- ### Training Logs
295
- <details><summary>Click to expand</summary>
296
-
297
- | Epoch | Step | Training Loss |
298
- |:--------:|:----:|:-------------:|
299
- | 10.0 | 10 | 1.6508 |
300
- | 20.0 | 20 | 1.2554 |
301
- | 30.0 | 30 | 0.8495 |
302
- | 40.0 | 40 | 0.7182 |
303
- | 50.0 | 50 | 0.6614 |
304
- | 60.0 | 60 | 0.575 |
305
- | 70.0 | 70 | 0.5027 |
306
- | 80.0 | 80 | 0.32 |
307
- | 90.0 | 90 | 0.1543 |
308
- | 100.0 | 100 | 0.0102 |
309
- | 110.0 | 110 | 0.012 |
310
- | 120.0 | 120 | 0.1164 |
311
- | 130.0 | 130 | 0.0 |
312
- | 140.0 | 140 | 0.0 |
313
- | 150.0 | 150 | 0.0 |
314
- | 160.0 | 160 | 0.0157 |
315
- | 170.0 | 170 | 0.0794 |
316
- | 180.0 | 180 | 0.0 |
317
- | 190.0 | 190 | 0.0 |
318
- | 200.0 | 200 | 0.0141 |
319
- | 210.0 | 210 | 0.0 |
320
- | 220.0 | 220 | 0.0 |
321
- | 230.0 | 230 | 0.1115 |
322
- | 240.0 | 240 | 0.0 |
323
- | 250.0 | 250 | 0.0 |
324
- | 260.0 | 260 | 0.0 |
325
- | 270.0 | 270 | 0.0 |
326
- | 280.0 | 280 | 0.0 |
327
- | 290.0 | 290 | 0.0 |
328
- | 300.0 | 300 | 0.0 |
329
- | 310.0 | 310 | 0.0 |
330
- | 320.0 | 320 | 0.0 |
331
- | 330.0 | 330 | 0.0 |
332
- | 340.0 | 340 | 0.0 |
333
- | 350.0 | 350 | 0.0 |
334
- | 360.0 | 360 | 0.0197 |
335
- | 370.0 | 370 | 0.0649 |
336
- | 380.0 | 380 | 0.0 |
337
- | 390.0 | 390 | 0.0 |
338
- | 400.0 | 400 | 0.0 |
339
- | 410.0 | 410 | 0.0 |
340
- | 420.0 | 420 | 0.0 |
341
- | 430.0 | 430 | 0.0 |
342
- | 440.0 | 440 | 0.0 |
343
- | 450.0 | 450 | 0.0 |
344
- | 460.0 | 460 | 0.0 |
345
- | 470.0 | 470 | 0.0 |
346
- | 480.0 | 480 | 0.0 |
347
- | 490.0 | 490 | 0.0 |
348
- | 500.0 | 500 | 0.0 |
349
- | 3.1842 | 100 | 0.6748 |
350
- | 6.3684 | 200 | 0.5883 |
351
- | 9.5526 | 300 | 0.5815 |
352
- | 12.7368 | 400 | 0.5338 |
353
- | 16.1053 | 500 | 0.5498 |
354
- | 19.2895 | 600 | 0.5359 |
355
- | 22.4737 | 700 | 0.5359 |
356
- | 25.6579 | 800 | 0.4893 |
357
- | 29.0263 | 900 | 0.4665 |
358
- | 32.2105 | 1000 | 0.4205 |
359
- | 35.3947 | 1100 | 0.4383 |
360
- | 38.5789 | 1200 | 0.4552 |
361
- | 41.7632 | 1300 | 0.4003 |
362
- | 45.1316 | 1400 | 0.3816 |
363
- | 48.3158 | 1500 | 0.3744 |
364
- | 51.5 | 1600 | 0.3504 |
365
- | 54.6842 | 1700 | 0.359 |
366
- | 58.0526 | 1800 | 0.3019 |
367
- | 61.2368 | 1900 | 0.3109 |
368
- | 64.4211 | 2000 | 0.3151 |
369
- | 67.6053 | 2100 | 0.3292 |
370
- | 70.7895 | 2200 | 0.2813 |
371
- | 74.1579 | 2300 | 0.2697 |
372
- | 77.3421 | 2400 | 0.1975 |
373
- | 80.5263 | 2500 | 0.2492 |
374
- | 83.7105 | 2600 | 0.2608 |
375
- | 87.0789 | 2700 | 0.2401 |
376
- | 90.2632 | 2800 | 0.2265 |
377
- | 93.4474 | 2900 | 0.2032 |
378
- | 96.6316 | 3000 | 0.2368 |
379
- | 99.8158 | 3100 | 0.2066 |
380
- | 103.1842 | 3200 | 0.1558 |
381
- | 106.3684 | 3300 | 0.2029 |
382
- | 109.5526 | 3400 | 0.244 |
383
- | 112.7368 | 3500 | 0.1894 |
384
- | 116.1053 | 3600 | 0.193 |
385
- | 119.2895 | 3700 | 0.1769 |
386
- | 122.4737 | 3800 | 0.1821 |
387
- | 125.6579 | 3900 | 0.0912 |
388
- | 129.0263 | 4000 | 0.1834 |
389
- | 132.2105 | 4100 | 0.1391 |
390
- | 135.3947 | 4200 | 0.1718 |
391
- | 138.5789 | 4300 | 0.1585 |
392
- | 141.7632 | 4400 | 0.1829 |
393
- | 145.1316 | 4500 | 0.1246 |
394
- | 148.3158 | 4600 | 0.1327 |
395
- | 151.5 | 4700 | 0.1396 |
396
- | 154.6842 | 4800 | 0.1028 |
397
- | 158.0526 | 4900 | 0.0907 |
398
- | 161.2368 | 5000 | 0.1179 |
399
- | 164.4211 | 5100 | 0.1496 |
400
- | 167.6053 | 5200 | 0.1156 |
401
- | 170.7895 | 5300 | 0.1148 |
402
- | 174.1579 | 5400 | 0.1275 |
403
- | 177.3421 | 5500 | 0.1354 |
404
- | 180.5263 | 5600 | 0.1334 |
405
- | 183.7105 | 5700 | 0.0874 |
406
- | 187.0789 | 5800 | 0.0922 |
407
- | 190.2632 | 5900 | 0.1109 |
408
- | 193.4474 | 6000 | 0.0708 |
409
- | 196.6316 | 6100 | 0.0943 |
410
- | 199.8158 | 6200 | 0.1164 |
411
- | 203.1842 | 6300 | 0.0785 |
412
- | 206.3684 | 6400 | 0.0853 |
413
- | 209.5526 | 6500 | 0.0674 |
414
- | 212.7368 | 6600 | 0.1009 |
415
- | 216.1053 | 6700 | 0.0846 |
416
- | 219.2895 | 6800 | 0.078 |
417
- | 222.4737 | 6900 | 0.0958 |
418
- | 225.6579 | 7000 | 0.0811 |
419
- | 229.0263 | 7100 | 0.0452 |
420
- | 232.2105 | 7200 | 0.0705 |
421
- | 235.3947 | 7300 | 0.0664 |
422
- | 238.5789 | 7400 | 0.0501 |
423
- | 241.7632 | 7500 | 0.0696 |
424
- | 245.1316 | 7600 | 0.0736 |
425
- | 248.3158 | 7700 | 0.08 |
426
-
427
- </details>
428
-
429
- ### Framework Versions
430
- - Python: 3.11.11
431
- - Sentence Transformers: 3.4.1
432
- - Transformers: 4.50.2
433
- - PyTorch: 2.6.0+cu124
434
- - Accelerate: 1.5.2
435
- - Datasets: 3.5.0
436
- - Tokenizers: 0.21.1
437
-
438
- ## Citation
439
-
440
- ### BibTeX
441
-
442
- #### Sentence Transformers
443
- ```bibtex
444
- @inproceedings{reimers-2019-sentence-bert,
445
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
446
- author = "Reimers, Nils and Gurevych, Iryna",
447
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
448
- month = "11",
449
- year = "2019",
450
- publisher = "Association for Computational Linguistics",
451
- url = "https://arxiv.org/abs/1908.10084",
452
- }
453
- ```
454
-
455
- #### BatchAllTripletLoss
456
- ```bibtex
457
- @misc{hermans2017defense,
458
- title={In Defense of the Triplet Loss for Person Re-Identification},
459
- author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
460
- year={2017},
461
- eprint={1703.07737},
462
- archivePrefix={arXiv},
463
- primaryClass={cs.CV}
464
- }
465
- ```
466
-
467
- <!--
468
- ## Glossary
469
-
470
- *Clearly define terms in order to be accessible across audiences.*
471
- -->
472
-
473
- <!--
474
- ## Model Card Authors
475
-
476
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
477
- -->
478
-
479
- <!--
480
- ## Model Card Contact
481
-
482
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
483
  -->
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:72
8
+ - loss:BatchAllTripletLoss
9
+ base_model: cl-nagoya/sup-simcse-ja-base
10
+ widget:
11
+ - source_sentence: 打放し型枠(B種)
12
+ sentences:
13
+ - 埋込み(B種)(手間)
14
+ - 埋込み(C種)(手間)
15
+ - 盛土A種
16
+ - source_sentence: 埋込み[B種]
17
+ sentences:
18
+ - 打放し型枠(A種)
19
+ - 盛土(C種)(手間)
20
+ - 埋戻し[C種]
21
+ - source_sentence: 盛土[C種]
22
+ sentences:
23
+ - 埋込み[C種]
24
+ - 盛土(A種)
25
+ - 盛土[A種]
26
+ - source_sentence: 埋戻し[A種]
27
+ sentences:
28
+ - 打放し型枠C種
29
+ - 打放し型枠(C種)(損料・手間)
30
+ - 盛土[B種]
31
+ - source_sentence: 埋込み(B種)(損料・手間)
32
+ sentences:
33
+ - 埋戻し(A種)(損料)
34
+ - 埋戻し(C種)(損料・手間)
35
+ - 埋戻し(B種)(手間)
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on cl-nagoya/sup-simcse-ja-base
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base) <!-- at revision d7315d93baf2c20fffa2b6845330049963509f79 -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_11")
87
+ # Run inference
88
+ sentences = [
89
+ '埋込み(B種)(損料・手間)',
90
+ '埋戻し(A種)(損料)',
91
+ '埋戻し(B種)(手間)',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 768]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+ * Size: 72 training samples
146
+ * Columns: <code>sentence</code> and <code>label</code>
147
+ * Approximate statistics based on the first 72 samples:
148
+ | | sentence | label |
149
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
150
+ | type | string | int |
151
+ | details | <ul><li>min: 11 tokens</li><li>mean: 16.21 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>0: ~0.50%</li><li>1: ~0.50%</li><li>2: ~0.50%</li><li>3: ~0.50%</li><li>4: ~0.50%</li><li>5: ~0.50%</li><li>6: ~0.50%</li><li>7: ~0.50%</li><li>8: ~0.50%</li><li>9: ~0.50%</li><li>10: ~0.50%</li><li>11: ~0.50%</li><li>12: ~0.50%</li><li>13: ~0.50%</li><li>14: ~0.50%</li><li>15: ~0.50%</li><li>16: ~0.50%</li><li>17: ~0.50%</li><li>18: ~0.50%</li><li>19: ~0.50%</li><li>20: ~0.50%</li><li>21: ~0.50%</li><li>22: ~0.50%</li><li>23: ~0.50%</li><li>24: ~0.50%</li><li>25: ~0.50%</li><li>26: ~0.50%</li><li>27: ~0.50%</li><li>28: ~0.50%</li><li>29: ~0.50%</li><li>30: ~0.50%</li><li>31: ~0.50%</li><li>32: ~0.50%</li><li>33: ~0.50%</li><li>34: ~0.50%</li><li>35: ~0.50%</li><li>36: ~0.50%</li><li>37: ~0.50%</li><li>38: ~0.50%</li><li>39: ~0.50%</li><li>40: ~0.50%</li><li>41: ~0.50%</li><li>42: ~0.50%</li><li>43: ~0.50%</li><li>44: ~0.60%</li><li>45: ~0.70%</li><li>46: ~0.50%</li><li>47: ~0.50%</li><li>48: ~0.50%</li><li>49: ~0.50%</li><li>50: ~0.50%</li><li>51: ~0.50%</li><li>52: ~0.50%</li><li>53: ~0.50%</li><li>54: ~0.50%</li><li>55: ~0.50%</li><li>56: ~0.50%</li><li>57: ~0.80%</li><li>58: ~0.50%</li><li>59: ~0.50%</li><li>60: ~0.50%</li><li>61: ~0.50%</li><li>62: ~0.50%</li><li>63: ~0.50%</li><li>64: ~0.50%</li><li>65: ~0.50%</li><li>66: ~0.50%</li><li>67: ~0.50%</li><li>68: ~0.50%</li><li>69: ~0.50%</li><li>70: ~0.50%</li><li>71: ~0.50%</li><li>72: ~0.50%</li><li>73: ~0.50%</li><li>74: ~0.50%</li><li>75: ~0.50%</li><li>76: ~0.50%</li><li>77: ~0.50%</li><li>78: ~0.50%</li><li>79: ~0.50%</li><li>80: ~0.50%</li><li>81: ~0.50%</li><li>82: ~0.50%</li><li>83: ~0.50%</li><li>84: ~0.50%</li><li>85: ~0.50%</li><li>86: ~0.50%</li><li>87: ~0.50%</li><li>88: ~0.60%</li><li>89: ~0.50%</li><li>90: ~0.50%</li><li>91: ~0.50%</li><li>92: ~0.50%</li><li>93: ~0.50%</li><li>94: ~0.50%</li><li>95: ~1.20%</li><li>96: ~1.70%</li><li>97: ~3.90%</li><li>98: ~0.50%</li><li>99: ~0.50%</li><li>100: ~0.50%</li><li>101: ~0.60%</li><li>102: ~0.50%</li><li>103: ~0.50%</li><li>104: ~0.50%</li><li>105: ~0.50%</li><li>106: ~0.50%</li><li>107: ~1.20%</li><li>108: ~0.50%</li><li>109: ~0.50%</li><li>110: ~0.50%</li><li>111: ~0.50%</li><li>112: ~0.50%</li><li>113: ~0.50%</li><li>114: ~0.50%</li><li>115: ~0.50%</li><li>116: ~0.50%</li><li>117: ~0.50%</li><li>118: ~0.50%</li><li>119: ~0.50%</li><li>120: ~0.50%</li><li>121: ~0.50%</li><li>122: ~0.50%</li><li>123: ~0.50%</li><li>124: ~0.50%</li><li>125: ~0.50%</li><li>126: ~0.50%</li><li>127: ~0.50%</li><li>128: ~0.50%</li><li>129: ~0.50%</li><li>130: ~0.50%</li><li>131: ~0.50%</li><li>132: ~0.50%</li><li>133: ~0.50%</li><li>134: ~0.50%</li><li>135: ~0.50%</li><li>136: ~0.50%</li><li>137: ~0.50%</li><li>138: ~0.50%</li><li>139: ~0.50%</li><li>140: ~0.50%</li><li>141: ~0.50%</li><li>142: ~0.50%</li><li>143: ~0.50%</li><li>144: ~0.50%</li><li>145: ~0.50%</li><li>146: ~0.70%</li><li>147: ~0.50%</li><li>148: ~3.10%</li><li>149: ~0.50%</li><li>150: ~2.30%</li><li>151: ~0.50%</li><li>152: ~0.50%</li><li>153: ~0.50%</li><li>154: ~0.50%</li><li>155: ~0.50%</li><li>156: ~0.50%</li><li>157: ~0.50%</li><li>158: ~0.50%</li><li>159: ~0.50%</li><li>160: ~0.50%</li><li>161: ~0.50%</li><li>162: ~0.50%</li><li>163: ~0.50%</li><li>164: ~0.50%</li><li>165: ~0.50%</li><li>166: ~0.50%</li><li>167: ~0.50%</li><li>168: ~0.50%</li><li>169: ~0.50%</li><li>170: ~0.50%</li><li>171: ~0.50%</li><li>172: ~0.50%</li><li>173: ~0.50%</li><li>174: ~0.50%</li><li>175: ~0.50%</li><li>176: ~0.50%</li><li>177: ~0.10%</li></ul> |
152
+ * Samples:
153
+ | sentence | label |
154
+ |:-----------------------------------------|:---------------|
155
+ | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
156
+ | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
157
+ | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
158
+ * Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
159
+
160
+ ### Training Hyperparameters
161
+ #### Non-Default Hyperparameters
162
+
163
+ - `per_device_train_batch_size`: 512
164
+ - `per_device_eval_batch_size`: 512
165
+ - `learning_rate`: 1e-05
166
+ - `weight_decay`: 0.01
167
+ - `num_train_epochs`: 250
168
+ - `warmup_ratio`: 0.1
169
+ - `fp16`: True
170
+ - `batch_sampler`: group_by_label
171
+
172
+ #### All Hyperparameters
173
+ <details><summary>Click to expand</summary>
174
+
175
+ - `overwrite_output_dir`: False
176
+ - `do_predict`: False
177
+ - `eval_strategy`: no
178
+ - `prediction_loss_only`: True
179
+ - `per_device_train_batch_size`: 512
180
+ - `per_device_eval_batch_size`: 512
181
+ - `per_gpu_train_batch_size`: None
182
+ - `per_gpu_eval_batch_size`: None
183
+ - `gradient_accumulation_steps`: 1
184
+ - `eval_accumulation_steps`: None
185
+ - `torch_empty_cache_steps`: None
186
+ - `learning_rate`: 1e-05
187
+ - `weight_decay`: 0.01
188
+ - `adam_beta1`: 0.9
189
+ - `adam_beta2`: 0.999
190
+ - `adam_epsilon`: 1e-08
191
+ - `max_grad_norm`: 1.0
192
+ - `num_train_epochs`: 250
193
+ - `max_steps`: -1
194
+ - `lr_scheduler_type`: linear
195
+ - `lr_scheduler_kwargs`: {}
196
+ - `warmup_ratio`: 0.1
197
+ - `warmup_steps`: 0
198
+ - `log_level`: passive
199
+ - `log_level_replica`: warning
200
+ - `log_on_each_node`: True
201
+ - `logging_nan_inf_filter`: True
202
+ - `save_safetensors`: True
203
+ - `save_on_each_node`: False
204
+ - `save_only_model`: False
205
+ - `restore_callback_states_from_checkpoint`: False
206
+ - `no_cuda`: False
207
+ - `use_cpu`: False
208
+ - `use_mps_device`: False
209
+ - `seed`: 42
210
+ - `data_seed`: None
211
+ - `jit_mode_eval`: False
212
+ - `use_ipex`: False
213
+ - `bf16`: False
214
+ - `fp16`: True
215
+ - `fp16_opt_level`: O1
216
+ - `half_precision_backend`: auto
217
+ - `bf16_full_eval`: False
218
+ - `fp16_full_eval`: False
219
+ - `tf32`: None
220
+ - `local_rank`: 0
221
+ - `ddp_backend`: None
222
+ - `tpu_num_cores`: None
223
+ - `tpu_metrics_debug`: False
224
+ - `debug`: []
225
+ - `dataloader_drop_last`: False
226
+ - `dataloader_num_workers`: 0
227
+ - `dataloader_prefetch_factor`: None
228
+ - `past_index`: -1
229
+ - `disable_tqdm`: False
230
+ - `remove_unused_columns`: True
231
+ - `label_names`: None
232
+ - `load_best_model_at_end`: False
233
+ - `ignore_data_skip`: False
234
+ - `fsdp`: []
235
+ - `fsdp_min_num_params`: 0
236
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
237
+ - `tp_size`: 0
238
+ - `fsdp_transformer_layer_cls_to_wrap`: None
239
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
240
+ - `deepspeed`: None
241
+ - `label_smoothing_factor`: 0.0
242
+ - `optim`: adamw_torch
243
+ - `optim_args`: None
244
+ - `adafactor`: False
245
+ - `group_by_length`: False
246
+ - `length_column_name`: length
247
+ - `ddp_find_unused_parameters`: None
248
+ - `ddp_bucket_cap_mb`: None
249
+ - `ddp_broadcast_buffers`: False
250
+ - `dataloader_pin_memory`: True
251
+ - `dataloader_persistent_workers`: False
252
+ - `skip_memory_metrics`: True
253
+ - `use_legacy_prediction_loop`: False
254
+ - `push_to_hub`: False
255
+ - `resume_from_checkpoint`: None
256
+ - `hub_model_id`: None
257
+ - `hub_strategy`: every_save
258
+ - `hub_private_repo`: None
259
+ - `hub_always_push`: False
260
+ - `gradient_checkpointing`: False
261
+ - `gradient_checkpointing_kwargs`: None
262
+ - `include_inputs_for_metrics`: False
263
+ - `include_for_metrics`: []
264
+ - `eval_do_concat_batches`: True
265
+ - `fp16_backend`: auto
266
+ - `push_to_hub_model_id`: None
267
+ - `push_to_hub_organization`: None
268
+ - `mp_parameters`:
269
+ - `auto_find_batch_size`: False
270
+ - `full_determinism`: False
271
+ - `torchdynamo`: None
272
+ - `ray_scope`: last
273
+ - `ddp_timeout`: 1800
274
+ - `torch_compile`: False
275
+ - `torch_compile_backend`: None
276
+ - `torch_compile_mode`: None
277
+ - `dispatch_batches`: None
278
+ - `split_batches`: None
279
+ - `include_tokens_per_second`: False
280
+ - `include_num_input_tokens_seen`: False
281
+ - `neftune_noise_alpha`: None
282
+ - `optim_target_modules`: None
283
+ - `batch_eval_metrics`: False
284
+ - `eval_on_start`: False
285
+ - `use_liger_kernel`: False
286
+ - `eval_use_gather_object`: False
287
+ - `average_tokens_across_devices`: False
288
+ - `prompts`: None
289
+ - `batch_sampler`: group_by_label
290
+ - `multi_dataset_batch_sampler`: proportional
291
+
292
+ </details>
293
+
294
+ ### Training Logs
295
+ <details><summary>Click to expand</summary>
296
+
297
+ | Epoch | Step | Training Loss |
298
+ |:--------:|:----:|:-------------:|
299
+ | 10.0 | 10 | 1.6508 |
300
+ | 20.0 | 20 | 1.2554 |
301
+ | 30.0 | 30 | 0.8495 |
302
+ | 40.0 | 40 | 0.7182 |
303
+ | 50.0 | 50 | 0.6614 |
304
+ | 60.0 | 60 | 0.575 |
305
+ | 70.0 | 70 | 0.5027 |
306
+ | 80.0 | 80 | 0.32 |
307
+ | 90.0 | 90 | 0.1543 |
308
+ | 100.0 | 100 | 0.0102 |
309
+ | 110.0 | 110 | 0.012 |
310
+ | 120.0 | 120 | 0.1164 |
311
+ | 130.0 | 130 | 0.0 |
312
+ | 140.0 | 140 | 0.0 |
313
+ | 150.0 | 150 | 0.0 |
314
+ | 160.0 | 160 | 0.0157 |
315
+ | 170.0 | 170 | 0.0794 |
316
+ | 180.0 | 180 | 0.0 |
317
+ | 190.0 | 190 | 0.0 |
318
+ | 200.0 | 200 | 0.0141 |
319
+ | 210.0 | 210 | 0.0 |
320
+ | 220.0 | 220 | 0.0 |
321
+ | 230.0 | 230 | 0.1115 |
322
+ | 240.0 | 240 | 0.0 |
323
+ | 250.0 | 250 | 0.0 |
324
+ | 260.0 | 260 | 0.0 |
325
+ | 270.0 | 270 | 0.0 |
326
+ | 280.0 | 280 | 0.0 |
327
+ | 290.0 | 290 | 0.0 |
328
+ | 300.0 | 300 | 0.0 |
329
+ | 310.0 | 310 | 0.0 |
330
+ | 320.0 | 320 | 0.0 |
331
+ | 330.0 | 330 | 0.0 |
332
+ | 340.0 | 340 | 0.0 |
333
+ | 350.0 | 350 | 0.0 |
334
+ | 360.0 | 360 | 0.0197 |
335
+ | 370.0 | 370 | 0.0649 |
336
+ | 380.0 | 380 | 0.0 |
337
+ | 390.0 | 390 | 0.0 |
338
+ | 400.0 | 400 | 0.0 |
339
+ | 410.0 | 410 | 0.0 |
340
+ | 420.0 | 420 | 0.0 |
341
+ | 430.0 | 430 | 0.0 |
342
+ | 440.0 | 440 | 0.0 |
343
+ | 450.0 | 450 | 0.0 |
344
+ | 460.0 | 460 | 0.0 |
345
+ | 470.0 | 470 | 0.0 |
346
+ | 480.0 | 480 | 0.0 |
347
+ | 490.0 | 490 | 0.0 |
348
+ | 500.0 | 500 | 0.0 |
349
+ | 3.1842 | 100 | 0.6748 |
350
+ | 6.3684 | 200 | 0.5883 |
351
+ | 9.5526 | 300 | 0.5815 |
352
+ | 12.7368 | 400 | 0.5338 |
353
+ | 16.1053 | 500 | 0.5498 |
354
+ | 19.2895 | 600 | 0.5359 |
355
+ | 22.4737 | 700 | 0.5359 |
356
+ | 25.6579 | 800 | 0.4893 |
357
+ | 29.0263 | 900 | 0.4665 |
358
+ | 32.2105 | 1000 | 0.4205 |
359
+ | 35.3947 | 1100 | 0.4383 |
360
+ | 38.5789 | 1200 | 0.4552 |
361
+ | 41.7632 | 1300 | 0.4003 |
362
+ | 45.1316 | 1400 | 0.3816 |
363
+ | 48.3158 | 1500 | 0.3744 |
364
+ | 51.5 | 1600 | 0.3504 |
365
+ | 54.6842 | 1700 | 0.359 |
366
+ | 58.0526 | 1800 | 0.3019 |
367
+ | 61.2368 | 1900 | 0.3109 |
368
+ | 64.4211 | 2000 | 0.3151 |
369
+ | 67.6053 | 2100 | 0.3292 |
370
+ | 70.7895 | 2200 | 0.2813 |
371
+ | 74.1579 | 2300 | 0.2697 |
372
+ | 77.3421 | 2400 | 0.1975 |
373
+ | 80.5263 | 2500 | 0.2492 |
374
+ | 83.7105 | 2600 | 0.2608 |
375
+ | 87.0789 | 2700 | 0.2401 |
376
+ | 90.2632 | 2800 | 0.2265 |
377
+ | 93.4474 | 2900 | 0.2032 |
378
+ | 96.6316 | 3000 | 0.2368 |
379
+ | 99.8158 | 3100 | 0.2066 |
380
+ | 103.1842 | 3200 | 0.1558 |
381
+ | 106.3684 | 3300 | 0.2029 |
382
+ | 109.5526 | 3400 | 0.244 |
383
+ | 112.7368 | 3500 | 0.1894 |
384
+ | 116.1053 | 3600 | 0.193 |
385
+ | 119.2895 | 3700 | 0.1769 |
386
+ | 122.4737 | 3800 | 0.1821 |
387
+ | 125.6579 | 3900 | 0.0912 |
388
+ | 129.0263 | 4000 | 0.1834 |
389
+ | 132.2105 | 4100 | 0.1391 |
390
+ | 135.3947 | 4200 | 0.1718 |
391
+ | 138.5789 | 4300 | 0.1585 |
392
+ | 141.7632 | 4400 | 0.1829 |
393
+ | 145.1316 | 4500 | 0.1246 |
394
+ | 148.3158 | 4600 | 0.1327 |
395
+ | 151.5 | 4700 | 0.1396 |
396
+ | 154.6842 | 4800 | 0.1028 |
397
+ | 158.0526 | 4900 | 0.0907 |
398
+ | 161.2368 | 5000 | 0.1179 |
399
+ | 164.4211 | 5100 | 0.1496 |
400
+ | 167.6053 | 5200 | 0.1156 |
401
+ | 170.7895 | 5300 | 0.1148 |
402
+ | 174.1579 | 5400 | 0.1275 |
403
+ | 177.3421 | 5500 | 0.1354 |
404
+ | 180.5263 | 5600 | 0.1334 |
405
+ | 183.7105 | 5700 | 0.0874 |
406
+ | 187.0789 | 5800 | 0.0922 |
407
+ | 190.2632 | 5900 | 0.1109 |
408
+ | 193.4474 | 6000 | 0.0708 |
409
+ | 196.6316 | 6100 | 0.0943 |
410
+ | 199.8158 | 6200 | 0.1164 |
411
+ | 203.1842 | 6300 | 0.0785 |
412
+ | 206.3684 | 6400 | 0.0853 |
413
+ | 209.5526 | 6500 | 0.0674 |
414
+ | 212.7368 | 6600 | 0.1009 |
415
+ | 216.1053 | 6700 | 0.0846 |
416
+ | 219.2895 | 6800 | 0.078 |
417
+ | 222.4737 | 6900 | 0.0958 |
418
+ | 225.6579 | 7000 | 0.0811 |
419
+ | 229.0263 | 7100 | 0.0452 |
420
+ | 232.2105 | 7200 | 0.0705 |
421
+ | 235.3947 | 7300 | 0.0664 |
422
+ | 238.5789 | 7400 | 0.0501 |
423
+ | 241.7632 | 7500 | 0.0696 |
424
+ | 245.1316 | 7600 | 0.0736 |
425
+ | 248.3158 | 7700 | 0.08 |
426
+
427
+ </details>
428
+
429
+ ### Framework Versions
430
+ - Python: 3.11.11
431
+ - Sentence Transformers: 3.4.1
432
+ - Transformers: 4.50.2
433
+ - PyTorch: 2.6.0+cu124
434
+ - Accelerate: 1.5.2
435
+ - Datasets: 3.5.0
436
+ - Tokenizers: 0.21.1
437
+
438
+ ## Citation
439
+
440
+ ### BibTeX
441
+
442
+ #### Sentence Transformers
443
+ ```bibtex
444
+ @inproceedings{reimers-2019-sentence-bert,
445
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
446
+ author = "Reimers, Nils and Gurevych, Iryna",
447
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
448
+ month = "11",
449
+ year = "2019",
450
+ publisher = "Association for Computational Linguistics",
451
+ url = "https://arxiv.org/abs/1908.10084",
452
+ }
453
+ ```
454
+
455
+ #### BatchAllTripletLoss
456
+ ```bibtex
457
+ @misc{hermans2017defense,
458
+ title={In Defense of the Triplet Loss for Person Re-Identification},
459
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
460
+ year={2017},
461
+ eprint={1703.07737},
462
+ archivePrefix={arXiv},
463
+ primaryClass={cs.CV}
464
+ }
465
+ ```
466
+
467
+ <!--
468
+ ## Glossary
469
+
470
+ *Clearly define terms in order to be accessible across audiences.*
471
+ -->
472
+
473
+ <!--
474
+ ## Model Card Authors
475
+
476
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
477
+ -->
478
+
479
+ <!--
480
+ ## Model Card Contact
481
+
482
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
483
  -->
config.json CHANGED
@@ -1,24 +1,25 @@
1
- {
2
- "architectures": [
3
- "BertModel"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "classifier_dropout": null,
7
- "hidden_act": "gelu",
8
- "hidden_dropout_prob": 0.1,
9
- "hidden_size": 768,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 3072,
12
- "layer_norm_eps": 1e-12,
13
- "max_position_embeddings": 512,
14
- "model_type": "bert",
15
- "num_attention_heads": 12,
16
- "num_hidden_layers": 12,
17
- "pad_token_id": 0,
18
- "position_embedding_type": "absolute",
19
- "torch_dtype": "float32",
20
- "transformers_version": "4.50.2",
21
- "type_vocab_size": 2,
22
- "use_cache": true,
23
- "vocab_size": 32768
24
- }
 
 
1
+ {
2
+ "_name_or_path": "C:/Project/Detomo/2025/meisai-check/meisai-api/meisaicheck-api/data/model\\Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_11-openvino-quantized",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32768
25
+ }
config_sentence_transformers.json CHANGED
@@ -1,10 +1,10 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "3.4.1",
4
- "transformers": "4.50.2",
5
- "pytorch": "2.6.0+cu124"
6
- },
7
- "prompts": {},
8
- "default_prompt_name": null,
9
- "similarity_fn_name": "cosine"
10
  }
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
  }
modules.json CHANGED
@@ -1,14 +1,14 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
  ]
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
  ]
openvino/openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a9c29920a3700c1f950c036804afceda176db9b775116f47e8473a38ab6d390
3
+ size 442470560
openvino/openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
- {
2
- "max_seq_length": 512,
3
- "do_lower_case": false
4
  }
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
  }
special_tokens_map.json CHANGED
@@ -1,7 +1,37 @@
1
- {
2
- "cls_token": "[CLS]",
3
- "mask_token": "[MASK]",
4
- "pad_token": "[PAD]",
5
- "sep_token": "[SEP]",
6
- "unk_token": "[UNK]"
7
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json CHANGED
@@ -1,64 +1,64 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "[PAD]",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "[UNK]",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "2": {
20
- "content": "[CLS]",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "3": {
28
- "content": "[SEP]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "4": {
36
- "content": "[MASK]",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "clean_up_tokenization_spaces": true,
45
- "cls_token": "[CLS]",
46
- "do_lower_case": false,
47
- "do_subword_tokenize": true,
48
- "do_word_tokenize": true,
49
- "extra_special_tokens": {},
50
- "jumanpp_kwargs": null,
51
- "mask_token": "[MASK]",
52
- "mecab_kwargs": {
53
- "mecab_dic": "unidic_lite"
54
- },
55
- "model_max_length": 512,
56
- "never_split": null,
57
- "pad_token": "[PAD]",
58
- "sep_token": "[SEP]",
59
- "subword_tokenizer_type": "wordpiece",
60
- "sudachi_kwargs": null,
61
- "tokenizer_class": "BertJapaneseTokenizer",
62
- "unk_token": "[UNK]",
63
- "word_tokenizer_type": "mecab"
64
- }
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "do_subword_tokenize": true,
48
+ "do_word_tokenize": true,
49
+ "extra_special_tokens": {},
50
+ "jumanpp_kwargs": null,
51
+ "mask_token": "[MASK]",
52
+ "mecab_kwargs": {
53
+ "mecab_dic": "unidic_lite"
54
+ },
55
+ "model_max_length": 512,
56
+ "never_split": null,
57
+ "pad_token": "[PAD]",
58
+ "sep_token": "[SEP]",
59
+ "subword_tokenizer_type": "wordpiece",
60
+ "sudachi_kwargs": null,
61
+ "tokenizer_class": "BertJapaneseTokenizer",
62
+ "unk_token": "[UNK]",
63
+ "word_tokenizer_type": "mecab"
64
+ }
vocab.txt CHANGED
The diff for this file is too large to render. See raw diff