File size: 2,526 Bytes
8b1d838
 
 
ab8d6e5
8b1d838
 
 
ae899f0
 
813660a
 
 
 
 
cbaad8f
 
6283a0c
189873c
3ff1322
6283a0c
 
 
 
 
 
5300e1d
6283a0c
 
813660a
189873c
08140eb
 
 
 
 
 
 
189873c
813660a
 
 
f804714
30518ee
f804714
c7c6b20
f804714
9502d6c
f804714
9502d6c
c7c6b20
9502d6c
f804714
9502d6c
30518ee
 
 
 
 
 
 
 
 
 
 
 
f804714
75c235c
4d2835c
75c235c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
language:
- it
license: apache-2.0
tags:
- text-generation-inference
- text generation
datasets:
- DeepMount00/llm_ita_ultra
---

# Mistral-7B-v0.1 for Italian Language Text Generation

## Model Architecture
- **Base Model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- **Specialization:** Italian Language

## Evaluation

For a detailed comparison of model performance, check out the [Leaderboard for Italian Language Models](https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard).

Here's a breakdown of the performance metrics:

| Metric                      | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average |
|:----------------------------|:----------------------|:----------------|:---------------------|:--------|
| **Accuracy Normalized**     | 0.6731                | 0.5502          | 0.5364               | 0.5866  |

---


**Quantized 4-Bit Version Available**

A quantized 4-bit version of the model is available for use. This version offers a more efficient processing capability by reducing the precision of the model's computations to 4 bits, which can lead to faster performance and decreased memory usage. This might be particularly useful for deploying the model on devices with limited computational power or memory resources.

For more details and to access the model, visit the following link: [Mistral-Ita-7b-GGUF 4-bit version](https://huggingface.co/DeepMount00/Mistral-Ita-7b-GGUF).

---

## How to Use
How to utilize my Mistral for Italian text generation

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

MODEL_NAME = "DeepMount00/Mistral-Ita-7b"

model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval()
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

def generate_answer(prompt):
    messages = [
        {"role": "user", "content": prompt},
    ]
    model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
    generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True,
                                          temperature=0.001, eos_token_id=tokenizer.eos_token_id)
    decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    return decoded[0]

prompt = "Come si apre un file json in python?"
answer = generate_answer(prompt)
print(answer)
```
---
## Developer
[Michele Montebovi]