#!/usr/bin/env python3 """ Model Options - Brello EI 0 Created by Epic Systems | Engineered by Rehan Temkar Demonstrates different model options for Brello EI 0. """ from brello_ei_0 import BrelloEI0 def test_model_option(model_path, description): """Test a specific model option""" print(f"\nšŸ¤– Testing: {description}") print(f"Model: {model_path}") print("-" * 50) try: # Load the model model = BrelloEI0( model_path=model_path, load_in_4bit=False ) # Test emotional intelligence test_message = "I'm feeling really stressed about my presentation tomorrow." response = model.generate_response(test_message) print(f"Input: {test_message}") print(f"Response: {response}") print("āœ… Model working!") return True except Exception as e: print(f"āŒ Model failed: {e}") return False def main(): """Test different model options""" print("šŸ¤– Brello EI 0 - Model Options") print("Created by Epic Systems | Engineered by Rehan Temkar") print("=" * 60) # Available model options model_options = [ { "path": "microsoft/DialoGPT-medium", "description": "Public Model (Recommended for quick start)" }, { "path": "microsoft/DialoGPT-large", "description": "Larger Public Model (Better responses)" }, { "path": "microsoft/DialoGPT-small", "description": "Smaller Public Model (Faster)" } ] # Test each model option working_models = [] for option in model_options: if test_model_option(option["path"], option["description"]): working_models.append(option) print(f"\nšŸ“Š Results:") print(f"āœ… Working models: {len(working_models)}/{len(model_options)}") if working_models: print("\nšŸŽÆ Recommended models:") for model in working_models: print(f" • {model['path']} - {model['description']}") print("\nšŸ’” To use Llama 3.2 3B:") print("1. Create Hugging Face account") print("2. Accept license at: https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct") print("3. Login with: huggingface-cli login") print("4. Update model_path to: 'meta-llama/Llama-3.2-3B-Instruct'") if __name__ == "__main__": main()