usage instructions
Browse files
README.md
CHANGED
@@ -11,4 +11,23 @@ That is: we loaded Llama-13b, we applied Alpaca LoRA, expanded vocabulary, then
|
|
11 |
This expanded tokenizer was used:
|
12 |
https://huggingface.co/Birchlabs/llama-13b-stepwise-tokenizer/blob/main/README.md
|
13 |
|
14 |
-
You will also need the finetuned input/output embedding layers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
This expanded tokenizer was used:
|
12 |
https://huggingface.co/Birchlabs/llama-13b-stepwise-tokenizer/blob/main/README.md
|
13 |
|
14 |
+
You will also need the finetuned input/output embedding layers:
|
15 |
+
https://huggingface.co/Birchlabs/llama-13b-stepwise-embeddings/tree/main
|
16 |
+
|
17 |
+
In total, you can load like this (use `evaluate.py` from our [`stepwise`](https://github.com/scottlogic-alex/qlora/tree/stepwise) branch of qlora)):
|
18 |
+
https://github.com/scottlogic-alex/qlora/blob/stepwise/evaluate.py#L209-L278
|
19 |
+
|
20 |
+
Download `embed_tokens.pt` and `lm_head.pt` from [`Birchlabs/llama-13b-stepwise-embeddings`](https://huggingface.co/Birchlabs/llama-13b-stepwise-embeddings/tree/main), then run evaluator like so:
|
21 |
+
|
22 |
+
```bash
|
23 |
+
python -m evaluate \
|
24 |
+
--model_name_or_path huggyllama/llama-13b \
|
25 |
+
--base_lora_model_name_or_path chansung/alpaca-lora-13b \
|
26 |
+
--tokenizer_model_name_or_path Birchlabs/llama-13b-stepwise-tokenizer \
|
27 |
+
--lora_model_name_or_path Birchlabs/llama-13b-stepwise-adapter \
|
28 |
+
--input_embedding_path embed_tokens.pt \
|
29 |
+
--output_embedding_path lm_head.pt \
|
30 |
+
--bf16 \
|
31 |
+
--use_bos_token_in_prompt \
|
32 |
+
--overrun_countermeasures False
|
33 |
+
```
|