Birchlabs commited on
Commit
58b465a
·
1 Parent(s): 8e4c6d9

usage instructions

Browse files
Files changed (1) hide show
  1. README.md +20 -1
README.md CHANGED
@@ -11,4 +11,23 @@ That is: we loaded Llama-13b, we applied Alpaca LoRA, expanded vocabulary, then
11
  This expanded tokenizer was used:
12
  https://huggingface.co/Birchlabs/llama-13b-stepwise-tokenizer/blob/main/README.md
13
 
14
- You will also need the finetuned input/output embedding layers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  This expanded tokenizer was used:
12
  https://huggingface.co/Birchlabs/llama-13b-stepwise-tokenizer/blob/main/README.md
13
 
14
+ You will also need the finetuned input/output embedding layers:
15
+ https://huggingface.co/Birchlabs/llama-13b-stepwise-embeddings/tree/main
16
+
17
+ In total, you can load like this (use `evaluate.py` from our [`stepwise`](https://github.com/scottlogic-alex/qlora/tree/stepwise) branch of qlora)):
18
+ https://github.com/scottlogic-alex/qlora/blob/stepwise/evaluate.py#L209-L278
19
+
20
+ Download `embed_tokens.pt` and `lm_head.pt` from [`Birchlabs/llama-13b-stepwise-embeddings`](https://huggingface.co/Birchlabs/llama-13b-stepwise-embeddings/tree/main), then run evaluator like so:
21
+
22
+ ```bash
23
+ python -m evaluate \
24
+ --model_name_or_path huggyllama/llama-13b \
25
+ --base_lora_model_name_or_path chansung/alpaca-lora-13b \
26
+ --tokenizer_model_name_or_path Birchlabs/llama-13b-stepwise-tokenizer \
27
+ --lora_model_name_or_path Birchlabs/llama-13b-stepwise-adapter \
28
+ --input_embedding_path embed_tokens.pt \
29
+ --output_embedding_path lm_head.pt \
30
+ --bf16 \
31
+ --use_bos_token_in_prompt \
32
+ --overrun_countermeasures False
33
+ ```