--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:457216 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: aubmindlab/bert-base-arabertv02 widget: - source_sentence: الناس يسيرون sentences: - شخصان يصعدان على الدرج - الناس يجلسون - رجل يجلس ويستمع للمحادثات - source_sentence: لاعب كرة قدم يرتدي زيًا أحمر وأسود يحمل الرقم 3 وخوذة سوداء يحمل الكرة ويحيط به لاعبون معارضون يرتدون زيًا أبيض وأرجواني بيكسفيل. sentences: - لاعب كرة قدم يحمل كرة - الرجل مستعد لالتقاط كرة القدم - الكلاب بالخارج - source_sentence: بعثة لوس أنجلوس هي عيادة مجانية sentences: - إنها مساعدة ممرضة في بعثة لوس أنجلوس - تعمل كطبيبة رئيسة في "لوس أنجلوس ميسيون" عيادة مجانية في حي فقير - التوافق مطلوب من الأجهزة أو البرمجيات. - source_sentence: رجل يرتدي قميصًا بنيًا مخططًا يقف يثني ذراعيه على قمة مبنى على سطح منزل. sentences: - رجل ينظر من نافذة المطبخ - شخص على السطح - لا يجوز إظهار أي مبلغ من الأصول في الميزانية العمومية للمهمة الفيدرالية - source_sentence: الحيوانات الأليفة تلعب دور الجدار sentences: - كلبان يلعبان في منطقة محصورة من الحصى. - الكلاب تجري لالتقاط عصا عبر الشارع. - يمكن تطوير التكنولوجيا. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on aubmindlab/bert-base-arabertv02 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: arabic nli dev type: arabic-nli-dev metrics: - type: pearson_cosine value: 0.5891378532917348 name: Pearson Cosine - type: spearman_cosine value: 0.5933477548023721 name: Spearman Cosine --- # SentenceTransformer based on aubmindlab/bert-base-arabertv02 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) - **Maximum Sequence Length:** 75 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'الحيوانات الأليفة تلعب دور الجدار', 'كلبان يلعبان في منطقة محصورة من الحصى.', 'الكلاب تجري لالتقاط عصا عبر الشارع.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `arabic-nli-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.5891 | | **spearman_cosine** | **0.5933** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 457,216 training samples * Columns: sentence_0, sentence_1, and sentence_2 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | sentence_2 | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | sentence_0 | sentence_1 | sentence_2 | |:------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:--------------------------------------------------------------| | يجلس طفل أحمر الشعر ينظر من خلال السور إلى الماء بينما يلعب الناس على الشاطئ في المسافة. | طفل أحمر الشعر مهتم بالماء والناس يلعبون على الشاطئ في المسافة. | فتى شقراء يراقب القارب مع الناس عليه يبحر بعيدا. | | عامل نظافة على وشك التنظيف في محطة القطار | البواب سيقوم بتنظيف محطة القطار | البواب يجلس في محطة القطار | | رجل يرتدي قميصاً أخضر وبنطال جينز ينحني فوق مرمى الهوكي الأحمر مع ثقب فوقه. | رجل يرتدي قميصاً أخضر. | امرأة ترتدي قميصاً أخضر. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `fp16`: True - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | arabic-nli-dev_spearman_cosine | |:------:|:-----:|:-------------:|:------------------------------:| | 0.1400 | 500 | 10.0831 | - | | 0.1999 | 714 | - | 0.4417 | | 0.2800 | 1000 | 5.6335 | - | | 0.3998 | 1428 | - | 0.5157 | | 0.4199 | 1500 | 4.7627 | - | | 0.5599 | 2000 | 4.3656 | - | | 0.5997 | 2142 | - | 0.5443 | | 0.6999 | 2500 | 4.085 | - | | 0.7996 | 2856 | - | 0.5569 | | 0.8399 | 3000 | 3.8314 | - | | 0.9798 | 3500 | 3.5961 | - | | 0.9994 | 3570 | - | 0.5612 | | 1.0 | 3572 | - | 0.5617 | | 1.1198 | 4000 | 3.2502 | - | | 1.1993 | 4284 | - | 0.5819 | | 1.2598 | 4500 | 3.1274 | - | | 1.3992 | 4998 | - | 0.5848 | | 1.3998 | 5000 | 3.0461 | - | | 1.5398 | 5500 | 2.9606 | - | | 1.5991 | 5712 | - | 0.5930 | | 1.6797 | 6000 | 2.9263 | - | | 1.7990 | 6426 | - | 0.5906 | | 1.8197 | 6500 | 2.8313 | - | | 1.9597 | 7000 | 2.7663 | - | | 1.9989 | 7140 | - | 0.5868 | | 2.0 | 7144 | - | 0.5888 | | 2.0997 | 7500 | 2.4814 | - | | 2.1988 | 7854 | - | 0.5864 | | 2.2396 | 8000 | 2.3545 | - | | 2.3796 | 8500 | 2.3052 | - | | 2.3987 | 8568 | - | 0.5898 | | 2.5196 | 9000 | 2.3227 | - | | 2.5985 | 9282 | - | 0.5924 | | 2.6596 | 9500 | 2.3185 | - | | 2.7984 | 9996 | - | 0.5933 | | 2.7996 | 10000 | 2.2571 | - | | 2.9395 | 10500 | 2.2335 | - | | 2.9983 | 10710 | - | 0.5925 | | 3.0 | 10716 | - | 0.5933 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.50.0.dev0 - PyTorch: 2.6.0+cu124 - Accelerate: 1.4.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```