Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,92 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- Lin-Chen/open-llava-next-llama3-8b
|
7 |
+
tags:
|
8 |
+
- remote sensing
|
9 |
+
---
|
10 |
+
# Adapting Multimodal Large Language Models to Domains via Post-Training
|
11 |
+
|
12 |
+
This repo contains the **remote sensing MLLM developed from LLaVA-NeXT-Llama3-8B** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
|
13 |
+
|
14 |
+
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
|
15 |
+
|
16 |
+
## 1. To Chat with AdaMLLM
|
17 |
+
|
18 |
+
```python
|
19 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
20 |
+
import torch
|
21 |
+
from PIL import Image
|
22 |
+
import requests
|
23 |
+
|
24 |
+
# Define your input image and instruction here:
|
25 |
+
## image
|
26 |
+
url = "https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png"
|
27 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
28 |
+
|
29 |
+
instruction = "What's in the image?"
|
30 |
+
|
31 |
+
model_path='AdaptLLM/remote sensing-LLaVA-NeXT-Llama3-8B'
|
32 |
+
|
33 |
+
# =========================== Do NOT need to modify the following ===============================
|
34 |
+
# Load the processor
|
35 |
+
processor = LlavaNextProcessor.from_pretrained(model_path)
|
36 |
+
|
37 |
+
# Define image token
|
38 |
+
image_token = "<|reserved_special_token_4|>"
|
39 |
+
|
40 |
+
# Format the prompt
|
41 |
+
prompt = (
|
42 |
+
f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
|
43 |
+
f"You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
44 |
+
f"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
|
45 |
+
f"{image_token}\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
46 |
+
)
|
47 |
+
|
48 |
+
# Load the model
|
49 |
+
model = LlavaNextForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16, device_map="auto")
|
50 |
+
|
51 |
+
# Prepare inputs and generate output
|
52 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
|
53 |
+
answer_start = int(inputs["input_ids"].shape[-1])
|
54 |
+
output = model.generate(**inputs, max_new_tokens=512)
|
55 |
+
|
56 |
+
# Decode predictions
|
57 |
+
pred = processor.decode(output[0][answer_start:], skip_special_tokens=True)
|
58 |
+
print(pred)
|
59 |
+
```
|
60 |
+
|
61 |
+
## 2. To Evaluate Any MLLM on Domain-Specific Benchmarks
|
62 |
+
|
63 |
+
Refer to the [remote sensing-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/remote sensing-VQA-benchmark) to reproduce our results and evaluate many other MLLMs on domain-specific benchmarks.
|
64 |
+
|
65 |
+
## 3. To Reproduce this Domain-Adapted MLLM
|
66 |
+
|
67 |
+
See [Post-Train Guide](https://github.com/bigai-ai/QA-Synthesizer/blob/main/docs/Post_Train.md) to adapt MLLMs to domains.
|
68 |
+
|
69 |
+
## Citation
|
70 |
+
If you find our work helpful, please cite us.
|
71 |
+
|
72 |
+
[AdaMLLM](https://huggingface.co/papers/2411.19930)
|
73 |
+
```bibtex
|
74 |
+
@article{adamllm,
|
75 |
+
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
|
76 |
+
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
|
77 |
+
journal={arXiv preprint arXiv:2411.19930},
|
78 |
+
year={2024}
|
79 |
+
}
|
80 |
+
```
|
81 |
+
|
82 |
+
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024)
|
83 |
+
```bibtex
|
84 |
+
@inproceedings{
|
85 |
+
cheng2024adapting,
|
86 |
+
title={Adapting Large Language Models via Reading Comprehension},
|
87 |
+
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
|
88 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
89 |
+
year={2024},
|
90 |
+
url={https://openreview.net/forum?id=y886UXPEZ0}
|
91 |
+
}
|
92 |
+
```
|