Safetensors
English
llava_next
remote-sensing
AdaptLLM commited on
Commit
83152a2
·
verified ·
1 Parent(s): 08a628c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -3
README.md CHANGED
@@ -1,3 +1,92 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Lin-Chen/open-llava-next-llama3-8b
7
+ tags:
8
+ - remote sensing
9
+ ---
10
+ # Adapting Multimodal Large Language Models to Domains via Post-Training
11
+
12
+ This repo contains the **remote sensing MLLM developed from LLaVA-NeXT-Llama3-8B** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
13
+
14
+ The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
15
+
16
+ ## 1. To Chat with AdaMLLM
17
+
18
+ ```python
19
+ from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
20
+ import torch
21
+ from PIL import Image
22
+ import requests
23
+
24
+ # Define your input image and instruction here:
25
+ ## image
26
+ url = "https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png"
27
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
28
+
29
+ instruction = "What's in the image?"
30
+
31
+ model_path='AdaptLLM/remote sensing-LLaVA-NeXT-Llama3-8B'
32
+
33
+ # =========================== Do NOT need to modify the following ===============================
34
+ # Load the processor
35
+ processor = LlavaNextProcessor.from_pretrained(model_path)
36
+
37
+ # Define image token
38
+ image_token = "<|reserved_special_token_4|>"
39
+
40
+ # Format the prompt
41
+ prompt = (
42
+ f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
43
+ f"You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
44
+ f"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
45
+ f"{image_token}\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
46
+ )
47
+
48
+ # Load the model
49
+ model = LlavaNextForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16, device_map="auto")
50
+
51
+ # Prepare inputs and generate output
52
+ inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
53
+ answer_start = int(inputs["input_ids"].shape[-1])
54
+ output = model.generate(**inputs, max_new_tokens=512)
55
+
56
+ # Decode predictions
57
+ pred = processor.decode(output[0][answer_start:], skip_special_tokens=True)
58
+ print(pred)
59
+ ```
60
+
61
+ ## 2. To Evaluate Any MLLM on Domain-Specific Benchmarks
62
+
63
+ Refer to the [remote sensing-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/remote sensing-VQA-benchmark) to reproduce our results and evaluate many other MLLMs on domain-specific benchmarks.
64
+
65
+ ## 3. To Reproduce this Domain-Adapted MLLM
66
+
67
+ See [Post-Train Guide](https://github.com/bigai-ai/QA-Synthesizer/blob/main/docs/Post_Train.md) to adapt MLLMs to domains.
68
+
69
+ ## Citation
70
+ If you find our work helpful, please cite us.
71
+
72
+ [AdaMLLM](https://huggingface.co/papers/2411.19930)
73
+ ```bibtex
74
+ @article{adamllm,
75
+ title={On Domain-Specific Post-Training for Multimodal Large Language Models},
76
+ author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
77
+ journal={arXiv preprint arXiv:2411.19930},
78
+ year={2024}
79
+ }
80
+ ```
81
+
82
+ [Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024)
83
+ ```bibtex
84
+ @inproceedings{
85
+ cheng2024adapting,
86
+ title={Adapting Large Language Models via Reading Comprehension},
87
+ author={Daixuan Cheng and Shaohan Huang and Furu Wei},
88
+ booktitle={The Twelfth International Conference on Learning Representations},
89
+ year={2024},
90
+ url={https://openreview.net/forum?id=y886UXPEZ0}
91
+ }
92
+ ```