Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,36 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- Ultralytics/YOLO11
|
5 |
+
pipeline_tag: object-detection
|
6 |
+
---
|
7 |
+
|
8 |
+
## YOLOv11-Face-Detection
|
9 |
+
|
10 |
+
A lightweight face detection model based on YOLO architecture ([YOLOv11 nano](https://huggingface.co/Ultralytics/YOLO11)), trained for 225 epochs on the WIDERFACE dataset.
|
11 |
+
|
12 |
+
It achieves the following results on the evaluation set:
|
13 |
+

|
14 |
+
|
15 |
+
[Confusion matrix](https://huggingface.co/AdamCodd/YOLOv11-face-detection/blob/main/confusion-matrix.png):
|
16 |
+
|
17 |
+
[[23577 2878]
|
18 |
+
|
19 |
+
[16098 0]]
|
20 |
+
|
21 |
+
### Usage
|
22 |
+
```python
|
23 |
+
from huggingface_hub import hf_hub_download
|
24 |
+
from ultralytics import YOLO
|
25 |
+
|
26 |
+
model_path = hf_hub_download(repo_id="AdamCodd/YOLOv11-face-detection", filename="model.pt")
|
27 |
+
model = YOLO(model_path)
|
28 |
+
|
29 |
+
results = model.predict("/path/to/your/image", save=True) # saves the result in runs/detect/predict
|
30 |
+
```
|
31 |
+
|
32 |
+
### Limitations
|
33 |
+
|
34 |
+
- Performance may vary in extreme lighting conditions
|
35 |
+
- Best suited for frontal and slightly angled faces
|
36 |
+
- Optimal performance for faces occupying >20 pixels
|