from transformers import AutoTokenizer, PreTrainedTokenizerFast from transformers.tokenization_utils_base import AddedToken from http.server import HTTPServer, BaseHTTPRequestHandler import json import argparse def _prompt_split_image( image_seq_len, image_rows, image_cols, fake_token_around_image, image_token, global_img_token, ): """Prompt with expanded image tokens for when the image is split into patches.""" text_split_images = "" for n_h in range(image_rows): for n_w in range(image_cols): text_split_images += ( f"{fake_token_around_image}" + f"" + f"{image_token}" * image_seq_len ) text_split_images += "\n" text_split_images += ( f"\n{fake_token_around_image}" + f"{global_img_token}" + f"{image_token}" * image_seq_len + f"{fake_token_around_image}" ) return text_split_images def _prompt_single_image( image_seq_len, fake_token_around_image, image_token, global_img_token ): """Prompt with expanded image tokens for a single image.""" return ( f"{fake_token_around_image}" + f"{global_img_token}" + f"{image_token}" * image_seq_len + f"{fake_token_around_image}" ) def get_image_prompt_string( image_rows, image_cols, image_seq_len, fake_token_around_image, image_token, global_img_token, ): if image_rows == 0 and image_cols == 0: return _prompt_single_image( image_seq_len, fake_token_around_image=fake_token_around_image, image_token=image_token, global_img_token=global_img_token, ) return _prompt_split_image( image_seq_len, image_rows, image_cols, fake_token_around_image, image_token, global_img_token, ) class Tokenizer_Http(): def __init__(self): path = 'qwen2_5-vl-tokenizer' self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) def encode(self, content): text = [f'<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{content}<|im_end|>\n<|im_start|>assistant\n'] input_ids = self.tokenizer(text) return input_ids["input_ids"][0] def encode_vpm(self, content="Describe this image."): # official implementation text = f'<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>' + '<|image_pad|>' * 256 + f'<|vision_end|>{content}<|im_end|>\n<|im_start|>assistant\n' # better for quantation model # text = f'<|im_start|>user\n{content}<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|vision_end|><|im_end|>\n<|im_start|>assistant\n' output_kwargs = {'text_kwargs': {'padding': True, 'return_tensors': 'pt'}, 'images_kwargs': {'return_tensors': 'pt'}, 'audio_kwargs': {'padding': True, 'return_tensors': 'pt'}, 'videos_kwargs': {'fps': 2.0, 'return_tensors': 'pt'}, 'common_kwargs': {'return_tensors': 'pt'}} text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) return text_inputs["input_ids"].tolist()[0] def decode(self, token_ids): return self.tokenizer.decode(token_ids, clean_up_tokenization_spaces=False) @property def bos_id(self): return self.tokenizer.bos_token_id @property def eos_id(self): return self.tokenizer.eos_token_id @property def bos_token(self): return self.tokenizer.bos_token @property def eos_token(self): return self.tokenizer.eos_token tokenizer = Tokenizer_Http() print(tokenizer.bos_id, tokenizer.bos_token, tokenizer.eos_id, tokenizer.eos_token) token_ids = tokenizer.encode_vpm() # [151644, 8948, 198, 56568, 104625, 100633, 104455, 104800, 101101, 32022, 102022, 99602, 100013, 9370, 90286, 21287, 42140, 53772, 35243, 26288, 104949, 3837, 105205, 109641, 67916, 30698, 11, 54851, 46944, 115404, 42192, 99441, 100623, 48692, 100168, 110498, 1773, 151645, 151644, 872, 198, # 151646, # 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, # 151647, # 198, 5501, 7512, 279, 2168, 19620, 13, 151645, 151644, 77091, 198] # 118 print(token_ids) print(len(token_ids)) token_ids = tokenizer.encode("hello world") # [151644, 8948, 198, 56568, 104625, 100633, 104455, 104800, 101101, 32022, 102022, 99602, 100013, 9370, 90286, 21287, 42140, 53772, 35243, 26288, 104949, 3837, 105205, 109641, 67916, 30698, 11, 54851, 46944, 115404, 42192, 99441, 100623, 48692, 100168, 110498, 1773, 151645, 151644, 872, 198, 14990, 1879, 151645, 151644, 77091, 198] # 47 print(token_ids) print(len(token_ids)) class Request(BaseHTTPRequestHandler): #通过类继承,新定义类 timeout = 5 server_version = 'Apache' def do_GET(self): print(self.path) #在新类中定义get的内容(当客户端向该服务端使用get请求时,本服务端将如下运行) self.send_response(200) self.send_header("type", "get") #设置响应头,可省略或设置多个 self.end_headers() if self.path == '/bos_id': bos_id = tokenizer.bos_id # print(bos_id) # to json if bos_id is None: msg = json.dumps({'bos_id': -1}) else: msg = json.dumps({'bos_id': bos_id}) elif self.path == '/eos_id': eos_id = tokenizer.eos_id if eos_id is None: msg = json.dumps({'eos_id': -1}) else: msg = json.dumps({'eos_id': eos_id}) else: msg = 'error' print(msg) msg = str(msg).encode() #转为str再转为byte格式 self.wfile.write(msg) #将byte格式的信息返回给客户端 def do_POST(self): #在新类中定义post的内容(当客户端向该服务端使用post请求时,本服务端将如下运行) data = self.rfile.read(int( self.headers['content-length'])) #获取从客户端传入的参数(byte格式) data = data.decode() #将byte格式转为str格式 self.send_response(200) self.send_header("type", "post") #设置响应头,可省略或设置多个 self.end_headers() if self.path == '/encode': req = json.loads(data) print(req) prompt = req['text'] b_img_prompt = False if 'img_prompt' in req: b_img_prompt = req['img_prompt'] if b_img_prompt: token_ids = tokenizer.encode_vpm(prompt) else: token_ids = tokenizer.encode(prompt) if token_ids is None: msg = json.dumps({'token_ids': -1}) else: msg = json.dumps({'token_ids': token_ids}) elif self.path == '/decode': req = json.loads(data) token_ids = req['token_ids'] text = tokenizer.decode(token_ids) if text is None: msg = json.dumps({'text': ""}) else: msg = json.dumps({'text': text}) else: msg = 'error' print(msg) msg = str(msg).encode() #转为str再转为byte格式 self.wfile.write(msg) #将byte格式的信息返回给客户端 if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument('--host', type=str, default='localhost') args.add_argument('--port', type=int, default=8080) args = args.parse_args() host = (args.host, args.port) #设定地址与端口号,'localhost'等价于'127.0.0.1' print('http://%s:%s' % host) server = HTTPServer(host, Request) #根据地址端口号和新定义的类,创建服务器实例 server.serve_forever() #开启服务