File size: 11,913 Bytes
a3b1a17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
from transformers import AutoTokenizer, PreTrainedTokenizerFast
from transformers.tokenization_utils_base import AddedToken
from http.server import HTTPServer, BaseHTTPRequestHandler
import json
import argparse
def _prompt_split_image(
image_seq_len,
image_rows,
image_cols,
fake_token_around_image,
image_token,
global_img_token,
):
"""Prompt with expanded image tokens for when the image is split into patches."""
text_split_images = ""
for n_h in range(image_rows):
for n_w in range(image_cols):
text_split_images += (
f"{fake_token_around_image}"
+ f"<row_{n_h + 1}_col_{n_w + 1}>"
+ f"{image_token}" * image_seq_len
)
text_split_images += "\n"
text_split_images += (
f"\n{fake_token_around_image}"
+ f"{global_img_token}"
+ f"{image_token}" * image_seq_len
+ f"{fake_token_around_image}"
)
return text_split_images
def _prompt_single_image(
image_seq_len, fake_token_around_image, image_token, global_img_token
):
"""Prompt with expanded image tokens for a single image."""
return (
f"{fake_token_around_image}"
+ f"{global_img_token}"
+ f"{image_token}" * image_seq_len
+ f"{fake_token_around_image}"
)
def get_image_prompt_string(
image_rows,
image_cols,
image_seq_len,
fake_token_around_image,
image_token,
global_img_token,
):
if image_rows == 0 and image_cols == 0:
return _prompt_single_image(
image_seq_len,
fake_token_around_image=fake_token_around_image,
image_token=image_token,
global_img_token=global_img_token,
)
return _prompt_split_image(
image_seq_len,
image_rows,
image_cols,
fake_token_around_image,
image_token,
global_img_token,
)
class Tokenizer_Http():
def __init__(self):
path = 'qwen2_5-vl-tokenizer'
self.tokenizer = AutoTokenizer.from_pretrained(path,
trust_remote_code=True,
use_fast=False)
def encode(self, content):
text = [f'<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{content}<|im_end|>\n<|im_start|>assistant\n']
input_ids = self.tokenizer(text)
return input_ids["input_ids"][0]
def encode_vpm(self, content="Describe this image."):
# official implementation
text = f'<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>' + '<|image_pad|>' * 256 + f'<|vision_end|>{content}<|im_end|>\n<|im_start|>assistant\n'
# better for quantation model
# text = f'<|im_start|>user\n{content}<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|image_pad|><|vision_end|><|im_end|>\n<|im_start|>assistant\n'
output_kwargs = {'text_kwargs': {'padding': True, 'return_tensors': 'pt'}, 'images_kwargs': {'return_tensors': 'pt'}, 'audio_kwargs': {'padding': True, 'return_tensors': 'pt'}, 'videos_kwargs': {'fps': 2.0, 'return_tensors': 'pt'}, 'common_kwargs': {'return_tensors': 'pt'}}
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return text_inputs["input_ids"].tolist()[0]
def decode(self, token_ids):
return self.tokenizer.decode(token_ids,
clean_up_tokenization_spaces=False)
@property
def bos_id(self):
return self.tokenizer.bos_token_id
@property
def eos_id(self):
return self.tokenizer.eos_token_id
@property
def bos_token(self):
return self.tokenizer.bos_token
@property
def eos_token(self):
return self.tokenizer.eos_token
tokenizer = Tokenizer_Http()
print(tokenizer.bos_id, tokenizer.bos_token, tokenizer.eos_id,
tokenizer.eos_token)
token_ids = tokenizer.encode_vpm()
# [151644, 8948, 198, 56568, 104625, 100633, 104455, 104800, 101101, 32022, 102022, 99602, 100013, 9370, 90286, 21287, 42140, 53772, 35243, 26288, 104949, 3837, 105205, 109641, 67916, 30698, 11, 54851, 46944, 115404, 42192, 99441, 100623, 48692, 100168, 110498, 1773, 151645, 151644, 872, 198,
# 151646,
# 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648, 151648,
# 151647,
# 198, 5501, 7512, 279, 2168, 19620, 13, 151645, 151644, 77091, 198]
# 118
print(token_ids)
print(len(token_ids))
token_ids = tokenizer.encode("hello world")
# [151644, 8948, 198, 56568, 104625, 100633, 104455, 104800, 101101, 32022, 102022, 99602, 100013, 9370, 90286, 21287, 42140, 53772, 35243, 26288, 104949, 3837, 105205, 109641, 67916, 30698, 11, 54851, 46944, 115404, 42192, 99441, 100623, 48692, 100168, 110498, 1773, 151645, 151644, 872, 198, 14990, 1879, 151645, 151644, 77091, 198]
# 47
print(token_ids)
print(len(token_ids))
class Request(BaseHTTPRequestHandler):
#通过类继承,新定义类
timeout = 5
server_version = 'Apache'
def do_GET(self):
print(self.path)
#在新类中定义get的内容(当客户端向该服务端使用get请求时,本服务端将如下运行)
self.send_response(200)
self.send_header("type", "get") #设置响应头,可省略或设置多个
self.end_headers()
if self.path == '/bos_id':
bos_id = tokenizer.bos_id
# print(bos_id)
# to json
if bos_id is None:
msg = json.dumps({'bos_id': -1})
else:
msg = json.dumps({'bos_id': bos_id})
elif self.path == '/eos_id':
eos_id = tokenizer.eos_id
if eos_id is None:
msg = json.dumps({'eos_id': -1})
else:
msg = json.dumps({'eos_id': eos_id})
else:
msg = 'error'
print(msg)
msg = str(msg).encode() #转为str再转为byte格式
self.wfile.write(msg) #将byte格式的信息返回给客户端
def do_POST(self):
#在新类中定义post的内容(当客户端向该服务端使用post请求时,本服务端将如下运行)
data = self.rfile.read(int(
self.headers['content-length'])) #获取从客户端传入的参数(byte格式)
data = data.decode() #将byte格式转为str格式
self.send_response(200)
self.send_header("type", "post") #设置响应头,可省略或设置多个
self.end_headers()
if self.path == '/encode':
req = json.loads(data)
print(req)
prompt = req['text']
b_img_prompt = False
if 'img_prompt' in req:
b_img_prompt = req['img_prompt']
if b_img_prompt:
token_ids = tokenizer.encode_vpm(prompt)
else:
token_ids = tokenizer.encode(prompt)
if token_ids is None:
msg = json.dumps({'token_ids': -1})
else:
msg = json.dumps({'token_ids': token_ids})
elif self.path == '/decode':
req = json.loads(data)
token_ids = req['token_ids']
text = tokenizer.decode(token_ids)
if text is None:
msg = json.dumps({'text': ""})
else:
msg = json.dumps({'text': text})
else:
msg = 'error'
print(msg)
msg = str(msg).encode() #转为str再转为byte格式
self.wfile.write(msg) #将byte格式的信息返回给客户端
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument('--host', type=str, default='localhost')
args.add_argument('--port', type=int, default=8080)
args = args.parse_args()
host = (args.host, args.port) #设定地址与端口号,'localhost'等价于'127.0.0.1'
print('http://%s:%s' % host)
server = HTTPServer(host, Request) #根据地址端口号和新定义的类,创建服务器实例
server.serve_forever() #开启服务
|