File size: 7,637 Bytes
d383d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b6418
d383d62
e7bfdf2
d383d62
 
11b6418
d383d62
 
 
11b6418
d383d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7bfdf2
 
d383d62
 
 
08e93b8
d383d62
 
e7bfdf2
 
 
 
 
 
 
 
 
d383d62
e7bfdf2
d383d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7bfdf2
d383d62
f1fd5e6
 
e7bfdf2
 
 
 
 
 
 
 
d383d62
 
 
 
 
 
 
 
 
 
 
 
 
 
33d32cb
d383d62
33d32cb
 
 
 
 
 
 
 
 
 
 
d383d62
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
license: mit
language:
- en
- zh
base_model:
- Qwen/Qwen2.5-VL-3B-Instruct
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- Qwen2.5-VL
- Qwen2.5-VL-3B-Instruct
- Int8
- VLM
---

# Qwen2.5-VL-3B-Instruct

This version of Qwen2.5-VL-3B-Instruct has been converted to run on the Axera NPU using **w8a16** quantization.

This model has been optimized with the following LoRA: 

Compatible with Pulsar2 version: 3.4

## Convert tools links:

For those who are interested in model conversion, you can try to export axmodel through the original repo : 
https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct

[Pulsar2 Link, How to Convert LLM from Huggingface to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/appendix/build_llm.html) 

[AXera NPU HOST LLM Runtime](https://github.com/AXERA-TECH/Qwen2.5-VL-3B-Instruct.axera) 


## Support Platform

- AX650
  - AX650N DEMO Board
  - [M4N-Dock(็ˆฑ่ŠฏๆดพPro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html)
  - [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html)

**Image Process**
|Chips| input size | image num | image encoder | ttft(320 tokens) | w8a16 | DDR | Flash |
|--|--|--|--|--|--|--|--|
|AX650| 448*448 | 1 | 780 ms | 2857 ms | 6.2 tokens/sec| 4.3 GiB |  4.6 GiB  |

**Video Process**
|Chips| input size | image num | image encoder |ttft(512 tokens) | w8a16 | DDR | Flash |
|--|--|--|--|--|--|--|--|
|AX650| 308*308 | 8  | 1400 ms | 5400 ms | 6.1 tokens/sec| 4.4 GiB |  4.7 GiB  | 

The DDR capacity refers to the CMM memory that needs to be consumed. Ensure that the CMM memory allocation on the development board is greater than this value.

## How to use

Download all files from this repository to the device

**If you using AX650 Board**
```
root@ax650:/mnt/qtang/llm-test/qwen2.5-vl-3b# tree -L 2
.
โ”œโ”€โ”€ image
โ”‚ย ย  โ””โ”€โ”€ ssd_car.jpg
โ”œโ”€โ”€ main
โ”œโ”€โ”€ python
โ”‚ย ย  โ”œโ”€โ”€ cv_resize.py
โ”‚ย ย  โ”œโ”€โ”€ infer_image.py
โ”‚ย ย  โ”œโ”€โ”€ infer_text.py
โ”‚ย ย  โ”œโ”€โ”€ infer_video.py
โ”‚ย ย  โ”œโ”€โ”€ preprocess.py
โ”‚ย ย  โ””โ”€โ”€ utils.py
โ”œโ”€โ”€ qwen2_5-vl-3b-image-ax650
โ”‚ย ย  โ”œโ”€โ”€ Qwen2.5-VL-3B-Instruct_vision_nchw448.axmodel
โ”‚ย ย  โ”œโ”€โ”€ model.embed_tokens.weight.bfloat16.bin
โ”‚ย ย  โ”œโ”€โ”€ qwen2_5_vl_p320_l0_together.axmodel
......
โ”‚ย ย  โ”œโ”€โ”€ qwen2_5_vl_p320_l9_together.axmodel
โ”‚ย ย  โ””โ”€โ”€ qwen2_5_vl_post.axmodel
โ”œโ”€โ”€ qwen2_5-vl-3b-video-ax650
โ”‚ย ย  โ”œโ”€โ”€ Qwen2.5-VL-3B-Instruct_vision_nhwc.axmodel
โ”‚ย ย  โ”œโ”€โ”€ model.embed_tokens.weight.bfloat16.bin
โ”‚ย ย  โ”œโ”€โ”€ qwen2_5_vl_p512_l0_together.axmodel
......
โ”‚ย ย  โ”œโ”€โ”€ qwen2_5_vl_p512_l9_together.axmodel
โ”‚ย ย  โ””โ”€โ”€ qwen2_5_vl_post.axmodel
โ”œโ”€โ”€ qwen2_5-vl-tokenizer
โ”‚ย ย  โ”œโ”€โ”€ chat_template.json
โ”‚ย ย  โ”œโ”€โ”€ config.json
โ”‚ย ย  โ”œโ”€โ”€ generation_config.json
โ”‚ย ย  โ”œโ”€โ”€ merges.txt
โ”‚ย ย  โ”œโ”€โ”€ model.safetensors.index.json
โ”‚ย ย  โ”œโ”€โ”€ preprocessor_config.json
โ”‚ย ย  โ”œโ”€โ”€ tokenizer.json
โ”‚ย ย  โ”œโ”€โ”€ tokenizer_config.json
โ”‚ย ย  โ””โ”€โ”€ vocab.json
โ”œโ”€โ”€ qwen2_tokenizer_image_448.py
โ”œโ”€โ”€ qwen2_tokenizer_video_308.py
โ”œโ”€โ”€ run_qwen2_5_vl_image.sh
โ”œโ”€โ”€ run_qwen2_5_vl_video.sh
โ””โ”€โ”€ video
    โ”œโ”€โ”€ frame_0075.jpg
......
    โ””โ”€โ”€ frame_0089.jpg

```

### Prepare tokenizer server

#### Install transformer

```
pip install transformers==4.41.1 jinja2
```

### Demo Run

#### Image understand demo

##### start tokenizer server for image understand demo

```
python3 qwen2_tokenizer_image_448.py --port 12345
```

##### run image understand demo

- input text

```
ๆ่ฟฐไธ‹ๅ›พ็‰‡
```

- input image

![](./image/ssd_car.jpg)

```
root@ax650:/mnt/qtang/llm-test/qwen2.5-vl-3b# ./run_qwen2_5_vl_image.sh
[I][                            Init][ 129]: LLM init start
bos_id: -1, eos_id: 151645
  2% | โ–ˆ                                 |   1 /  40 [0.01s<0.24s, 166.67 count/s] tokenizer init ok
[I][                            Init][  26]: LLaMaEmbedSelector use mmap
100% | โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ |  40 /  40 [38.23s<38.23s, 1.05 count/s] init vpm axmodel ok,remain_cmm(7600 MB)
[I][                            Init][ 277]: max_token_len : 1023
[I][                            Init][ 282]: kv_cache_size : 256, kv_cache_num: 1023
[I][                            Init][ 290]: prefill_token_num : 320
[I][                            Init][ 292]: vpm_height : 1024,vpm_width : 392
[I][                            Init][ 301]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running

prompt >> who are you?
image >>
[I][                             Run][ 638]: ttft: 2854.47 ms
I am a large language model created by Alibaba Cloud. I am called Qwen.

[N][                             Run][ 779]: hit eos,avg 6.05 token/s

prompt >> ๆ่ฟฐไธ‹ๅ›พ็‰‡
image >> image/ssd_car.jpg
[I][                          Encode][ 416]: image encode time : 795.614014 ms, size : 524288
[I][                             Run][ 638]: ttft: 2856.88 ms
่ฟ™ๅผ ๅ›พ็‰‡ๅฑ•็คบไบ†ไธ€ๆก็นๅฟ™็š„ๅŸŽๅธ‚่ก—้“ใ€‚ๅ‰ๆ™ฏไธญ๏ผŒไธ€ๅๅฅณๅญ็ซ™ๅœจไบบ่กŒ้“ไธŠ๏ผŒๅฅน็ฉฟ็€้ป‘่‰ฒๅค–ๅฅ—๏ผŒ้ขๅธฆๅพฎ็ฌ‘ใ€‚ๅฅนๆ—่พนๆ˜ฏไธ€่พ†็บข่‰ฒ็š„ๅŒๅฑ‚ๅทดๅฃซ๏ผŒๅทดๅฃซไธŠๆœ‰ไธ€ไธชๅนฟๅ‘Š๏ผŒ
ไธŠ้ขๅ†™็€โ€œTHINGS GET MORE EXITING WHEN YOU SAY โ€˜YESโ€™โ€ใ€‚ๅทดๅฃซ็š„่ฝฆ็‰Œๅทๆ˜ฏโ€œL15โ€ใ€‚ๅทดๅฃซๆ—่พนๅœ็€ไธ€่พ†้ป‘่‰ฒ็š„ๅฐๅž‹่ดง่ฝฆใ€‚่ƒŒๆ™ฏไธญๅฏไปฅ็œ‹ๅˆฐไธ€ไบ›ๅ•†ๅบ—ๅ’Œ่กŒไบบ๏ผŒ
่ก—้“ไธคๆ—็š„ๅปบ็ญ‘็‰ฉๆ˜ฏ็Žฐไปฃ็š„็Žป็’ƒๅน•ๅข™ๅปบ็ญ‘ใ€‚ๆ•ดไฝ“ๆฐ›ๅ›ดๆ˜พๅพ—็นๅฟ™่€Œๅ……ๆปกๆดปๅŠ›ใ€‚

[N][                             Run][ 779]: hit eos,avg 5.96 token/s
```

#### Video understand demo

Please pre-process the image of the video file into a 308x308 size picture

##### start tokenizer server for image understand demo

```
python qwen2_tokenizer_video_308.py --port 12345
```

##### run image understand demo

```
root@ax650:/mnt/qtang/llm-test/qwen2.5-vl-3b# ./run_qwen2_5_vl_video.sh
[I][                            Init][ 129]: LLM init start
bos_id: -1, eos_id: 151645
  2% | โ–ˆ                                 |   1 /  40 [0.00s<0.12s, 333.33 count/s] tokenizer init ok
[I][                            Init][  26]: LLaMaEmbedSelector use mmap
100% | โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ |  40 /  40 [40.05s<40.05s, 1.00 count/s] init vpm axmodel ok,remain_cmm(7680 MB)
[I][                            Init][ 277]: max_token_len : 1023
[I][                            Init][ 282]: kv_cache_size : 256, kv_cache_num: 1023
[I][                            Init][ 290]: prefill_token_num : 512
[I][                            Init][ 292]: vpm_height : 484,vpm_width : 392
[I][                            Init][ 301]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running

prompt >> ๆ่ฟฐไธ‹่ง†้ข‘
image >> video
video/frame_0000.jpg
video/frame_0008.jpg
video/frame_0016.jpg
video/frame_0024.jpg
video/frame_0032.jpg
video/frame_0040.jpg
video/frame_0048.jpg
video/frame_0056.jpg
[I][                          Encode][ 416]: image encode time : 1487.557007 ms, size : 991232
[I][                             Run][ 638]: ttft: 5488.29 ms
่ง†้ข‘ๅฑ•็คบไบ†ไธคๅชๆพ้ผ ๅœจๆˆทๅค–็š„ๅœบๆ™ฏใ€‚่ƒŒๆ™ฏๆ˜ฏๆจก็ณŠ็š„ๅฑฑ่„‰ๅ’Œ่“ๅคฉ๏ผŒๅ‰ๆ™ฏไธญๆœ‰ๆพ้ผ ๅœจไบ’ๅŠจใ€‚ๆพ้ผ ็š„ๆฏ›่‰ฒไธป่ฆๆ˜ฏๆฃ•่‰ฒๅ’Œ็™ฝ่‰ฒ๏ผŒๅฎƒไปฌ็š„็ˆชๅญๆ˜ฏๆฉ™่‰ฒ็š„ใ€‚ๆพ้ผ ไผผไนŽๅœจไบ’็›ธ็Žฉ่€ๆˆ–ไบ‰ๆŠข๏ผŒๅฎƒไปฌ็š„็ˆชๅญๅ’Œๅ˜ดๅทด้ƒฝไผธๅ‘ๅฏนๆ–นใ€‚ๆ•ดไธชๅœบๆ™ฏๆ˜พๅพ—้žๅธธ่‡ช็„ถๅ’Œ็”ŸๅŠจใ€‚
```

#### Inference with M.2 Accelerator card
What is M.2 Accelerator card?, Show this DEMO based on Raspberry PI 5.

TODO