naazahrani's picture
Adding evaluation results
661e616 verified
{
"results": {
"openaimmlu": {
" ": " ",
"alias": "openaimmlu"
},
"openaimmlu_STEM": {
"acc,none": 0.4900662251655629,
"acc_stderr,none": 0.00883192107765626,
"alias": " - STEM"
},
"openaimmlu_abstract_algebra": {
"alias": " - abstract_algebra",
"acc,none": 0.25,
"acc_stderr,none": 0.04351941398892446
},
"openaimmlu_astronomy": {
"alias": " - astronomy",
"acc,none": 0.6842105263157895,
"acc_stderr,none": 0.037827289808654685
},
"openaimmlu_college_biology": {
"alias": " - college_biology",
"acc,none": 0.6597222222222222,
"acc_stderr,none": 0.039621355734862175
},
"openaimmlu_college_chemistry": {
"alias": " - college_chemistry",
"acc,none": 0.35,
"acc_stderr,none": 0.047937248544110196
},
"openaimmlu_college_computer_science": {
"alias": " - college_computer_science",
"acc,none": 0.44,
"acc_stderr,none": 0.04988876515698589
},
"openaimmlu_college_mathematics": {
"alias": " - college_mathematics",
"acc,none": 0.3,
"acc_stderr,none": 0.046056618647183814
},
"openaimmlu_college_physics": {
"alias": " - college_physics",
"acc,none": 0.37254901960784315,
"acc_stderr,none": 0.04810840148082633
},
"openaimmlu_computer_security": {
"alias": " - computer_security",
"acc,none": 0.71,
"acc_stderr,none": 0.045604802157206845
},
"openaimmlu_conceptual_physics": {
"alias": " - conceptual_physics",
"acc,none": 0.548936170212766,
"acc_stderr,none": 0.032529096196131965
},
"openaimmlu_econometrics": {
"alias": " - econometrics",
"acc,none": 0.3684210526315789,
"acc_stderr,none": 0.04537815354939391
},
"openaimmlu_electrical_engineering": {
"alias": " - electrical_engineering",
"acc,none": 0.5103448275862069,
"acc_stderr,none": 0.04165774775728763
},
"openaimmlu_elementary_mathematics": {
"alias": " - elementary_mathematics",
"acc,none": 0.48677248677248675,
"acc_stderr,none": 0.025742297289575142
},
"openaimmlu_high_school_biology": {
"alias": " - high_school_biology",
"acc,none": 0.6645161290322581,
"acc_stderr,none": 0.026860206444724352
},
"openaimmlu_high_school_chemistry": {
"alias": " - high_school_chemistry",
"acc,none": 0.4630541871921182,
"acc_stderr,none": 0.035083705204426656
},
"openaimmlu_high_school_computer_science": {
"alias": " - high_school_computer_science",
"acc,none": 0.56,
"acc_stderr,none": 0.04988876515698589
},
"openaimmlu_high_school_mathematics": {
"alias": " - high_school_mathematics",
"acc,none": 0.35185185185185186,
"acc_stderr,none": 0.02911661760608301
},
"openaimmlu_high_school_physics": {
"alias": " - high_school_physics",
"acc,none": 0.37748344370860926,
"acc_stderr,none": 0.039580272311215706
},
"openaimmlu_high_school_statistics": {
"alias": " - high_school_statistics",
"acc,none": 0.4675925925925926,
"acc_stderr,none": 0.03402801581358966
},
"openaimmlu_humanities": {
"acc,none": 0.6834811529933481,
"acc_stderr,none": 0.01087157296938379,
"alias": " - Humanities"
},
"openaimmlu_high_school_european_history": {
"alias": " - high_school_european_history",
"acc,none": 0.7333333333333333,
"acc_stderr,none": 0.03453131801885417
},
"openaimmlu_high_school_us_history": {
"alias": " - high_school_us_history",
"acc,none": 0.7254901960784313,
"acc_stderr,none": 0.03132179803083291
},
"openaimmlu_high_school_world_history": {
"alias": " - high_school_world_history",
"acc,none": 0.7721518987341772,
"acc_stderr,none": 0.027303484599069415
},
"openaimmlu_international_law": {
"alias": " - international_law",
"acc,none": 0.7355371900826446,
"acc_stderr,none": 0.04026187527591205
},
"openaimmlu_jurisprudence": {
"alias": " - jurisprudence",
"acc,none": 0.6851851851851852,
"acc_stderr,none": 0.04489931073591311
},
"openaimmlu_logical_fallacies": {
"alias": " - logical_fallacies",
"acc,none": 0.6871165644171779,
"acc_stderr,none": 0.03642914578292404
},
"openaimmlu_philosophy": {
"alias": " - philosophy",
"acc,none": 0.6077170418006431,
"acc_stderr,none": 0.027731258647011987
},
"openaimmlu_prehistory": {
"alias": " - prehistory",
"acc,none": 0.595679012345679,
"acc_stderr,none": 0.027306625297327698
},
"openaimmlu_world_religions": {
"alias": " - world_religions",
"acc,none": 0.7251461988304093,
"acc_stderr,none": 0.034240429246915824
},
"openaimmlu_other": {
"acc,none": 0.5571476736345247,
"acc_stderr,none": 0.0062200183711956835,
"alias": " - Other"
},
"openaimmlu_anatomy": {
"alias": " - anatomy",
"acc,none": 0.4740740740740741,
"acc_stderr,none": 0.04313531696750575
},
"openaimmlu_clinical_knowledge": {
"alias": " - clinical_knowledge",
"acc,none": 0.5773584905660377,
"acc_stderr,none": 0.030402331445769537
},
"openaimmlu_college_medicine": {
"alias": " - college_medicine",
"acc,none": 0.5086705202312138,
"acc_stderr,none": 0.0381189098894041
},
"openaimmlu_formal_logic": {
"alias": " - formal_logic",
"acc,none": 0.3888888888888889,
"acc_stderr,none": 0.04360314860077459
},
"openaimmlu_global_facts": {
"alias": " - global_facts",
"acc,none": 0.4,
"acc_stderr,none": 0.049236596391733084
},
"openaimmlu_high_school_geography": {
"alias": " - high_school_geography",
"acc,none": 0.7121212121212122,
"acc_stderr,none": 0.03225883512300992
},
"openaimmlu_high_school_psychology": {
"alias": " - high_school_psychology",
"acc,none": 0.7302752293577982,
"acc_stderr,none": 0.01902848671111545
},
"openaimmlu_human_aging": {
"alias": " - human_aging",
"acc,none": 0.6278026905829597,
"acc_stderr,none": 0.0324430528300873
},
"openaimmlu_machine_learning": {
"alias": " - machine_learning",
"acc,none": 0.41964285714285715,
"acc_stderr,none": 0.04684099321077106
},
"openaimmlu_medical_genetics": {
"alias": " - medical_genetics",
"acc,none": 0.66,
"acc_stderr,none": 0.04760952285695237
},
"openaimmlu_miscellaneous": {
"alias": " - miscellaneous",
"acc,none": 0.7573435504469987,
"acc_stderr,none": 0.015329888940899873
},
"openaimmlu_nutrition": {
"alias": " - nutrition",
"acc,none": 0.6601307189542484,
"acc_stderr,none": 0.027121956071388856
},
"openaimmlu_professional_accounting": {
"alias": " - professional_accounting",
"acc,none": 0.41843971631205673,
"acc_stderr,none": 0.029427994039419994
},
"openaimmlu_professional_law": {
"alias": " - professional_law",
"acc,none": 0.41264667535853977,
"acc_stderr,none": 0.012573836633799016
},
"openaimmlu_professional_medicine": {
"alias": " - professional_medicine",
"acc,none": 0.5735294117647058,
"acc_stderr,none": 0.030042615832714857
},
"openaimmlu_professional_psychology": {
"alias": " - professional_psychology",
"acc,none": 0.5522875816993464,
"acc_stderr,none": 0.020116925347422425
},
"openaimmlu_virology": {
"alias": " - virology",
"acc,none": 0.4759036144578313,
"acc_stderr,none": 0.03887971849597264
},
"openaimmlu_social_science": {
"acc,none": 0.5578210590383444,
"acc_stderr,none": 0.008094265116110859,
"alias": " - Social Science"
},
"openaimmlu_business_ethics": {
"alias": " - business_ethics",
"acc,none": 0.67,
"acc_stderr,none": 0.04725815626252609
},
"openaimmlu_high_school_government_and_politics": {
"alias": " - high_school_government_and_politics",
"acc,none": 0.772020725388601,
"acc_stderr,none": 0.03027690994517826
},
"openaimmlu_high_school_macroeconomics": {
"alias": " - high_school_macroeconomics",
"acc,none": 0.5692307692307692,
"acc_stderr,none": 0.025106820660539753
},
"openaimmlu_high_school_microeconomics": {
"alias": " - high_school_microeconomics",
"acc,none": 0.5756302521008403,
"acc_stderr,none": 0.03210479051015776
},
"openaimmlu_human_sexuality": {
"alias": " - human_sexuality",
"acc,none": 0.6641221374045801,
"acc_stderr,none": 0.04142313771996664
},
"openaimmlu_management": {
"alias": " - management",
"acc,none": 0.7281553398058253,
"acc_stderr,none": 0.044052680241409216
},
"openaimmlu_marketing": {
"alias": " - marketing",
"acc,none": 0.8076923076923077,
"acc_stderr,none": 0.025819233256483727
},
"openaimmlu_moral_disputes": {
"alias": " - moral_disputes",
"acc,none": 0.5751445086705202,
"acc_stderr,none": 0.026613350840261746
},
"openaimmlu_moral_scenarios": {
"alias": " - moral_scenarios",
"acc,none": 0.2916201117318436,
"acc_stderr,none": 0.015201032512520442
},
"openaimmlu_public_relations": {
"alias": " - public_relations",
"acc,none": 0.5727272727272728,
"acc_stderr,none": 0.047381987035454834
},
"openaimmlu_security_studies": {
"alias": " - security_studies",
"acc,none": 0.6693877551020408,
"acc_stderr,none": 0.030116426296540603
},
"openaimmlu_sociology": {
"alias": " - sociology",
"acc,none": 0.6915422885572139,
"acc_stderr,none": 0.032658195885126966
},
"openaimmlu_us_foreign_policy": {
"alias": " - us_foreign_policy",
"acc,none": 0.81,
"acc_stderr,none": 0.039427724440366234
}
},
"groups": {
"openaimmlu_STEM": {
"acc,none": 0.4900662251655629,
"acc_stderr,none": 0.00883192107765626,
"alias": " - STEM"
},
"openaimmlu_humanities": {
"acc,none": 0.6834811529933481,
"acc_stderr,none": 0.01087157296938379,
"alias": " - Humanities"
},
"openaimmlu_other": {
"acc,none": 0.5571476736345247,
"acc_stderr,none": 0.0062200183711956835,
"alias": " - Other"
},
"openaimmlu_social_science": {
"acc,none": 0.5578210590383444,
"acc_stderr,none": 0.008094265116110859,
"alias": " - Social Science"
}
},
"group_subtasks": {
"openaimmlu_humanities": [
"openaimmlu_jurisprudence",
"openaimmlu_logical_fallacies",
"openaimmlu_philosophy",
"openaimmlu_high_school_world_history",
"openaimmlu_high_school_european_history",
"openaimmlu_prehistory",
"openaimmlu_high_school_us_history",
"openaimmlu_international_law",
"openaimmlu_world_religions"
],
"openaimmlu_social_science": [
"openaimmlu_high_school_microeconomics",
"openaimmlu_high_school_government_and_politics",
"openaimmlu_management",
"openaimmlu_security_studies",
"openaimmlu_business_ethics",
"openaimmlu_sociology",
"openaimmlu_high_school_macroeconomics",
"openaimmlu_moral_scenarios",
"openaimmlu_public_relations",
"openaimmlu_us_foreign_policy",
"openaimmlu_moral_disputes",
"openaimmlu_human_sexuality",
"openaimmlu_marketing"
],
"openaimmlu_other": [
"openaimmlu_nutrition",
"openaimmlu_miscellaneous",
"openaimmlu_anatomy",
"openaimmlu_virology",
"openaimmlu_professional_medicine",
"openaimmlu_human_aging",
"openaimmlu_clinical_knowledge",
"openaimmlu_professional_accounting",
"openaimmlu_high_school_geography",
"openaimmlu_professional_psychology",
"openaimmlu_high_school_psychology",
"openaimmlu_machine_learning",
"openaimmlu_medical_genetics",
"openaimmlu_professional_law",
"openaimmlu_college_medicine",
"openaimmlu_formal_logic",
"openaimmlu_global_facts"
],
"openaimmlu_STEM": [
"openaimmlu_college_physics",
"openaimmlu_astronomy",
"openaimmlu_computer_security",
"openaimmlu_elementary_mathematics",
"openaimmlu_high_school_chemistry",
"openaimmlu_college_mathematics",
"openaimmlu_college_chemistry",
"openaimmlu_college_biology",
"openaimmlu_conceptual_physics",
"openaimmlu_high_school_statistics",
"openaimmlu_electrical_engineering",
"openaimmlu_high_school_computer_science",
"openaimmlu_high_school_mathematics",
"openaimmlu_abstract_algebra",
"openaimmlu_high_school_physics",
"openaimmlu_college_computer_science",
"openaimmlu_econometrics",
"openaimmlu_high_school_biology"
],
"openaimmlu": [
"openaimmlu_STEM",
"openaimmlu_other",
"openaimmlu_social_science",
"openaimmlu_humanities"
]
},
"configs": {
"openaimmlu_abstract_algebra": {
"task": "openaimmlu_abstract_algebra",
"task_alias": "abstract_algebra",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "abstract_algebra",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_anatomy": {
"task": "openaimmlu_anatomy",
"task_alias": "anatomy",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "anatomy",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_astronomy": {
"task": "openaimmlu_astronomy",
"task_alias": "astronomy",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "astronomy",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_business_ethics": {
"task": "openaimmlu_business_ethics",
"task_alias": "business_ethics",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "business_ethics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_clinical_knowledge": {
"task": "openaimmlu_clinical_knowledge",
"task_alias": "clinical_knowledge",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "clinical_knowledge",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_college_biology": {
"task": "openaimmlu_college_biology",
"task_alias": "college_biology",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "college_biology",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_college_chemistry": {
"task": "openaimmlu_college_chemistry",
"task_alias": "college_chemistry",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "college_chemistry",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_college_computer_science": {
"task": "openaimmlu_college_computer_science",
"task_alias": "college_computer_science",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "college_computer_science",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_college_mathematics": {
"task": "openaimmlu_college_mathematics",
"task_alias": "college_mathematics",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "college_mathematics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_college_medicine": {
"task": "openaimmlu_college_medicine",
"task_alias": "college_medicine",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "college_medicine",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_college_physics": {
"task": "openaimmlu_college_physics",
"task_alias": "college_physics",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "college_physics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_computer_security": {
"task": "openaimmlu_computer_security",
"task_alias": "computer_security",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "computer_security",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_conceptual_physics": {
"task": "openaimmlu_conceptual_physics",
"task_alias": "conceptual_physics",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "conceptual_physics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_econometrics": {
"task": "openaimmlu_econometrics",
"task_alias": "econometrics",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "econometrics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_electrical_engineering": {
"task": "openaimmlu_electrical_engineering",
"task_alias": "electrical_engineering",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "electrical_engineering",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_elementary_mathematics": {
"task": "openaimmlu_elementary_mathematics",
"task_alias": "elementary_mathematics",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "elementary_mathematics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_formal_logic": {
"task": "openaimmlu_formal_logic",
"task_alias": "formal_logic",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "formal_logic",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_global_facts": {
"task": "openaimmlu_global_facts",
"task_alias": "global_facts",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "global_facts",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_biology": {
"task": "openaimmlu_high_school_biology",
"task_alias": "high_school_biology",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_biology",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_chemistry": {
"task": "openaimmlu_high_school_chemistry",
"task_alias": "high_school_chemistry",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_chemistry",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_computer_science": {
"task": "openaimmlu_high_school_computer_science",
"task_alias": "high_school_computer_science",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_computer_science",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_european_history": {
"task": "openaimmlu_high_school_european_history",
"task_alias": "high_school_european_history",
"tag": "openaimmlu_humanities_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_european_history",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_geography": {
"task": "openaimmlu_high_school_geography",
"task_alias": "high_school_geography",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_geography",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_government_and_politics": {
"task": "openaimmlu_high_school_government_and_politics",
"task_alias": "high_school_government_and_politics",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_government_and_politics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_macroeconomics": {
"task": "openaimmlu_high_school_macroeconomics",
"task_alias": "high_school_macroeconomics",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_macroeconomics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_mathematics": {
"task": "openaimmlu_high_school_mathematics",
"task_alias": "high_school_mathematics",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_mathematics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_microeconomics": {
"task": "openaimmlu_high_school_microeconomics",
"task_alias": "high_school_microeconomics",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_microeconomics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_physics": {
"task": "openaimmlu_high_school_physics",
"task_alias": "high_school_physics",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_physics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_psychology": {
"task": "openaimmlu_high_school_psychology",
"task_alias": "high_school_psychology",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_psychology",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_statistics": {
"task": "openaimmlu_high_school_statistics",
"task_alias": "high_school_statistics",
"tag": "openaimmlu_STEM_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_statistics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_us_history": {
"task": "openaimmlu_high_school_us_history",
"task_alias": "high_school_us_history",
"tag": "openaimmlu_humanities_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_us_history",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_high_school_world_history": {
"task": "openaimmlu_high_school_world_history",
"task_alias": "high_school_world_history",
"tag": "openaimmlu_humanities_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "high_school_world_history",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_human_aging": {
"task": "openaimmlu_human_aging",
"task_alias": "human_aging",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "human_aging",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_human_sexuality": {
"task": "openaimmlu_human_sexuality",
"task_alias": "human_sexuality",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "human_sexuality",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_international_law": {
"task": "openaimmlu_international_law",
"task_alias": "international_law",
"tag": "openaimmlu_humanities_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "international_law",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_jurisprudence": {
"task": "openaimmlu_jurisprudence",
"task_alias": "jurisprudence",
"tag": "openaimmlu_humanities_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "jurisprudence",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_logical_fallacies": {
"task": "openaimmlu_logical_fallacies",
"task_alias": "logical_fallacies",
"tag": "openaimmlu_humanities_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "logical_fallacies",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_machine_learning": {
"task": "openaimmlu_machine_learning",
"task_alias": "machine_learning",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "machine_learning",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_management": {
"task": "openaimmlu_management",
"task_alias": "management",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "management",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_marketing": {
"task": "openaimmlu_marketing",
"task_alias": "marketing",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "marketing",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_medical_genetics": {
"task": "openaimmlu_medical_genetics",
"task_alias": "medical_genetics",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "medical_genetics",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_miscellaneous": {
"task": "openaimmlu_miscellaneous",
"task_alias": "miscellaneous",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "miscellaneous",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_moral_disputes": {
"task": "openaimmlu_moral_disputes",
"task_alias": "moral_disputes",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "moral_disputes",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_moral_scenarios": {
"task": "openaimmlu_moral_scenarios",
"task_alias": "moral_scenarios",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "moral_scenarios",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_nutrition": {
"task": "openaimmlu_nutrition",
"task_alias": "nutrition",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "nutrition",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_philosophy": {
"task": "openaimmlu_philosophy",
"task_alias": "philosophy",
"tag": "openaimmlu_humanities_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "philosophy",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_prehistory": {
"task": "openaimmlu_prehistory",
"task_alias": "prehistory",
"tag": "openaimmlu_humanities_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "prehistory",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_professional_accounting": {
"task": "openaimmlu_professional_accounting",
"task_alias": "professional_accounting",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "professional_accounting",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_professional_law": {
"task": "openaimmlu_professional_law",
"task_alias": "professional_law",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "professional_law",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_professional_medicine": {
"task": "openaimmlu_professional_medicine",
"task_alias": "professional_medicine",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "professional_medicine",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_professional_psychology": {
"task": "openaimmlu_professional_psychology",
"task_alias": "professional_psychology",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "professional_psychology",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_public_relations": {
"task": "openaimmlu_public_relations",
"task_alias": "public_relations",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "public_relations",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_security_studies": {
"task": "openaimmlu_security_studies",
"task_alias": "security_studies",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "security_studies",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_sociology": {
"task": "openaimmlu_sociology",
"task_alias": "sociology",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "sociology",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_us_foreign_policy": {
"task": "openaimmlu_us_foreign_policy",
"task_alias": "us_foreign_policy",
"tag": "openaimmlu_social_science_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "us_foreign_policy",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_virology": {
"task": "openaimmlu_virology",
"task_alias": "virology",
"tag": "openaimmlu_other_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "virology",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"openaimmlu_world_religions": {
"task": "openaimmlu_world_religions",
"task_alias": "world_religions",
"tag": "openaimmlu_humanities_tasks",
"dataset_path": "khalidalt/openai_mmlu_arabic",
"dataset_name": "world_religions",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n",
"doc_to_text": "query",
"doc_to_target": "gold",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
}
},
"versions": {
"openaimmlu_STEM": 0,
"openaimmlu_abstract_algebra": 0.0,
"openaimmlu_anatomy": 0.0,
"openaimmlu_astronomy": 0.0,
"openaimmlu_business_ethics": 0.0,
"openaimmlu_clinical_knowledge": 0.0,
"openaimmlu_college_biology": 0.0,
"openaimmlu_college_chemistry": 0.0,
"openaimmlu_college_computer_science": 0.0,
"openaimmlu_college_mathematics": 0.0,
"openaimmlu_college_medicine": 0.0,
"openaimmlu_college_physics": 0.0,
"openaimmlu_computer_security": 0.0,
"openaimmlu_conceptual_physics": 0.0,
"openaimmlu_econometrics": 0.0,
"openaimmlu_electrical_engineering": 0.0,
"openaimmlu_elementary_mathematics": 0.0,
"openaimmlu_formal_logic": 0.0,
"openaimmlu_global_facts": 0.0,
"openaimmlu_high_school_biology": 0.0,
"openaimmlu_high_school_chemistry": 0.0,
"openaimmlu_high_school_computer_science": 0.0,
"openaimmlu_high_school_european_history": 0.0,
"openaimmlu_high_school_geography": 0.0,
"openaimmlu_high_school_government_and_politics": 0.0,
"openaimmlu_high_school_macroeconomics": 0.0,
"openaimmlu_high_school_mathematics": 0.0,
"openaimmlu_high_school_microeconomics": 0.0,
"openaimmlu_high_school_physics": 0.0,
"openaimmlu_high_school_psychology": 0.0,
"openaimmlu_high_school_statistics": 0.0,
"openaimmlu_high_school_us_history": 0.0,
"openaimmlu_high_school_world_history": 0.0,
"openaimmlu_human_aging": 0.0,
"openaimmlu_human_sexuality": 0.0,
"openaimmlu_humanities": 0,
"openaimmlu_international_law": 0.0,
"openaimmlu_jurisprudence": 0.0,
"openaimmlu_logical_fallacies": 0.0,
"openaimmlu_machine_learning": 0.0,
"openaimmlu_management": 0.0,
"openaimmlu_marketing": 0.0,
"openaimmlu_medical_genetics": 0.0,
"openaimmlu_miscellaneous": 0.0,
"openaimmlu_moral_disputes": 0.0,
"openaimmlu_moral_scenarios": 0.0,
"openaimmlu_nutrition": 0.0,
"openaimmlu_other": 0,
"openaimmlu_philosophy": 0.0,
"openaimmlu_prehistory": 0.0,
"openaimmlu_professional_accounting": 0.0,
"openaimmlu_professional_law": 0.0,
"openaimmlu_professional_medicine": 0.0,
"openaimmlu_professional_psychology": 0.0,
"openaimmlu_public_relations": 0.0,
"openaimmlu_security_studies": 0.0,
"openaimmlu_social_science": 0,
"openaimmlu_sociology": 0.0,
"openaimmlu_us_foreign_policy": 0.0,
"openaimmlu_virology": 0.0,
"openaimmlu_world_religions": 0.0
},
"n-shot": {
"openaimmlu_abstract_algebra": 0,
"openaimmlu_anatomy": 0,
"openaimmlu_astronomy": 0,
"openaimmlu_business_ethics": 0,
"openaimmlu_clinical_knowledge": 0,
"openaimmlu_college_biology": 0,
"openaimmlu_college_chemistry": 0,
"openaimmlu_college_computer_science": 0,
"openaimmlu_college_mathematics": 0,
"openaimmlu_college_medicine": 0,
"openaimmlu_college_physics": 0,
"openaimmlu_computer_security": 0,
"openaimmlu_conceptual_physics": 0,
"openaimmlu_econometrics": 0,
"openaimmlu_electrical_engineering": 0,
"openaimmlu_elementary_mathematics": 0,
"openaimmlu_formal_logic": 0,
"openaimmlu_global_facts": 0,
"openaimmlu_high_school_biology": 0,
"openaimmlu_high_school_chemistry": 0,
"openaimmlu_high_school_computer_science": 0,
"openaimmlu_high_school_european_history": 0,
"openaimmlu_high_school_geography": 0,
"openaimmlu_high_school_government_and_politics": 0,
"openaimmlu_high_school_macroeconomics": 0,
"openaimmlu_high_school_mathematics": 0,
"openaimmlu_high_school_microeconomics": 0,
"openaimmlu_high_school_physics": 0,
"openaimmlu_high_school_psychology": 0,
"openaimmlu_high_school_statistics": 0,
"openaimmlu_high_school_us_history": 0,
"openaimmlu_high_school_world_history": 0,
"openaimmlu_human_aging": 0,
"openaimmlu_human_sexuality": 0,
"openaimmlu_international_law": 0,
"openaimmlu_jurisprudence": 0,
"openaimmlu_logical_fallacies": 0,
"openaimmlu_machine_learning": 0,
"openaimmlu_management": 0,
"openaimmlu_marketing": 0,
"openaimmlu_medical_genetics": 0,
"openaimmlu_miscellaneous": 0,
"openaimmlu_moral_disputes": 0,
"openaimmlu_moral_scenarios": 0,
"openaimmlu_nutrition": 0,
"openaimmlu_philosophy": 0,
"openaimmlu_prehistory": 0,
"openaimmlu_professional_accounting": 0,
"openaimmlu_professional_law": 0,
"openaimmlu_professional_medicine": 0,
"openaimmlu_professional_psychology": 0,
"openaimmlu_public_relations": 0,
"openaimmlu_security_studies": 0,
"openaimmlu_sociology": 0,
"openaimmlu_us_foreign_policy": 0,
"openaimmlu_virology": 0,
"openaimmlu_world_religions": 0
},
"higher_is_better": {
"openaimmlu": {
"acc": true
},
"openaimmlu_STEM": {
"acc": true
},
"openaimmlu_abstract_algebra": {
"acc": true
},
"openaimmlu_anatomy": {
"acc": true
},
"openaimmlu_astronomy": {
"acc": true
},
"openaimmlu_business_ethics": {
"acc": true
},
"openaimmlu_clinical_knowledge": {
"acc": true
},
"openaimmlu_college_biology": {
"acc": true
},
"openaimmlu_college_chemistry": {
"acc": true
},
"openaimmlu_college_computer_science": {
"acc": true
},
"openaimmlu_college_mathematics": {
"acc": true
},
"openaimmlu_college_medicine": {
"acc": true
},
"openaimmlu_college_physics": {
"acc": true
},
"openaimmlu_computer_security": {
"acc": true
},
"openaimmlu_conceptual_physics": {
"acc": true
},
"openaimmlu_econometrics": {
"acc": true
},
"openaimmlu_electrical_engineering": {
"acc": true
},
"openaimmlu_elementary_mathematics": {
"acc": true
},
"openaimmlu_formal_logic": {
"acc": true
},
"openaimmlu_global_facts": {
"acc": true
},
"openaimmlu_high_school_biology": {
"acc": true
},
"openaimmlu_high_school_chemistry": {
"acc": true
},
"openaimmlu_high_school_computer_science": {
"acc": true
},
"openaimmlu_high_school_european_history": {
"acc": true
},
"openaimmlu_high_school_geography": {
"acc": true
},
"openaimmlu_high_school_government_and_politics": {
"acc": true
},
"openaimmlu_high_school_macroeconomics": {
"acc": true
},
"openaimmlu_high_school_mathematics": {
"acc": true
},
"openaimmlu_high_school_microeconomics": {
"acc": true
},
"openaimmlu_high_school_physics": {
"acc": true
},
"openaimmlu_high_school_psychology": {
"acc": true
},
"openaimmlu_high_school_statistics": {
"acc": true
},
"openaimmlu_high_school_us_history": {
"acc": true
},
"openaimmlu_high_school_world_history": {
"acc": true
},
"openaimmlu_human_aging": {
"acc": true
},
"openaimmlu_human_sexuality": {
"acc": true
},
"openaimmlu_humanities": {
"acc": true
},
"openaimmlu_international_law": {
"acc": true
},
"openaimmlu_jurisprudence": {
"acc": true
},
"openaimmlu_logical_fallacies": {
"acc": true
},
"openaimmlu_machine_learning": {
"acc": true
},
"openaimmlu_management": {
"acc": true
},
"openaimmlu_marketing": {
"acc": true
},
"openaimmlu_medical_genetics": {
"acc": true
},
"openaimmlu_miscellaneous": {
"acc": true
},
"openaimmlu_moral_disputes": {
"acc": true
},
"openaimmlu_moral_scenarios": {
"acc": true
},
"openaimmlu_nutrition": {
"acc": true
},
"openaimmlu_other": {
"acc": true
},
"openaimmlu_philosophy": {
"acc": true
},
"openaimmlu_prehistory": {
"acc": true
},
"openaimmlu_professional_accounting": {
"acc": true
},
"openaimmlu_professional_law": {
"acc": true
},
"openaimmlu_professional_medicine": {
"acc": true
},
"openaimmlu_professional_psychology": {
"acc": true
},
"openaimmlu_public_relations": {
"acc": true
},
"openaimmlu_security_studies": {
"acc": true
},
"openaimmlu_social_science": {
"acc": true
},
"openaimmlu_sociology": {
"acc": true
},
"openaimmlu_us_foreign_policy": {
"acc": true
},
"openaimmlu_virology": {
"acc": true
},
"openaimmlu_world_religions": {
"acc": true
}
},
"n-samples": {
"openaimmlu_college_physics": {
"original": 102,
"effective": 102
},
"openaimmlu_astronomy": {
"original": 152,
"effective": 152
},
"openaimmlu_computer_security": {
"original": 100,
"effective": 100
},
"openaimmlu_elementary_mathematics": {
"original": 378,
"effective": 378
},
"openaimmlu_high_school_chemistry": {
"original": 203,
"effective": 203
},
"openaimmlu_college_mathematics": {
"original": 100,
"effective": 100
},
"openaimmlu_college_chemistry": {
"original": 100,
"effective": 100
},
"openaimmlu_college_biology": {
"original": 144,
"effective": 144
},
"openaimmlu_conceptual_physics": {
"original": 235,
"effective": 235
},
"openaimmlu_high_school_statistics": {
"original": 216,
"effective": 216
},
"openaimmlu_electrical_engineering": {
"original": 145,
"effective": 145
},
"openaimmlu_high_school_computer_science": {
"original": 100,
"effective": 100
},
"openaimmlu_high_school_mathematics": {
"original": 270,
"effective": 270
},
"openaimmlu_abstract_algebra": {
"original": 100,
"effective": 100
},
"openaimmlu_high_school_physics": {
"original": 151,
"effective": 151
},
"openaimmlu_college_computer_science": {
"original": 100,
"effective": 100
},
"openaimmlu_econometrics": {
"original": 114,
"effective": 114
},
"openaimmlu_high_school_biology": {
"original": 310,
"effective": 310
},
"openaimmlu_nutrition": {
"original": 306,
"effective": 306
},
"openaimmlu_miscellaneous": {
"original": 783,
"effective": 783
},
"openaimmlu_anatomy": {
"original": 135,
"effective": 135
},
"openaimmlu_virology": {
"original": 166,
"effective": 166
},
"openaimmlu_professional_medicine": {
"original": 272,
"effective": 272
},
"openaimmlu_human_aging": {
"original": 223,
"effective": 223
},
"openaimmlu_clinical_knowledge": {
"original": 265,
"effective": 265
},
"openaimmlu_professional_accounting": {
"original": 282,
"effective": 282
},
"openaimmlu_high_school_geography": {
"original": 198,
"effective": 198
},
"openaimmlu_professional_psychology": {
"original": 612,
"effective": 612
},
"openaimmlu_high_school_psychology": {
"original": 545,
"effective": 545
},
"openaimmlu_machine_learning": {
"original": 112,
"effective": 112
},
"openaimmlu_medical_genetics": {
"original": 100,
"effective": 100
},
"openaimmlu_professional_law": {
"original": 1534,
"effective": 1534
},
"openaimmlu_college_medicine": {
"original": 173,
"effective": 173
},
"openaimmlu_formal_logic": {
"original": 126,
"effective": 126
},
"openaimmlu_global_facts": {
"original": 100,
"effective": 100
},
"openaimmlu_high_school_microeconomics": {
"original": 238,
"effective": 238
},
"openaimmlu_high_school_government_and_politics": {
"original": 193,
"effective": 193
},
"openaimmlu_management": {
"original": 103,
"effective": 103
},
"openaimmlu_security_studies": {
"original": 245,
"effective": 245
},
"openaimmlu_business_ethics": {
"original": 100,
"effective": 100
},
"openaimmlu_sociology": {
"original": 201,
"effective": 201
},
"openaimmlu_high_school_macroeconomics": {
"original": 390,
"effective": 390
},
"openaimmlu_moral_scenarios": {
"original": 895,
"effective": 895
},
"openaimmlu_public_relations": {
"original": 110,
"effective": 110
},
"openaimmlu_us_foreign_policy": {
"original": 100,
"effective": 100
},
"openaimmlu_moral_disputes": {
"original": 346,
"effective": 346
},
"openaimmlu_human_sexuality": {
"original": 131,
"effective": 131
},
"openaimmlu_marketing": {
"original": 234,
"effective": 234
},
"openaimmlu_jurisprudence": {
"original": 108,
"effective": 108
},
"openaimmlu_logical_fallacies": {
"original": 163,
"effective": 163
},
"openaimmlu_philosophy": {
"original": 311,
"effective": 311
},
"openaimmlu_high_school_world_history": {
"original": 237,
"effective": 237
},
"openaimmlu_high_school_european_history": {
"original": 165,
"effective": 165
},
"openaimmlu_prehistory": {
"original": 324,
"effective": 324
},
"openaimmlu_high_school_us_history": {
"original": 204,
"effective": 204
},
"openaimmlu_international_law": {
"original": 121,
"effective": 121
},
"openaimmlu_world_religions": {
"original": 171,
"effective": 171
}
},
"config": {
"model": "vllm",
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
"batch_size": 1,
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "8e1bd48d",
"date": 1735663577.7452598,
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.47.1",
"upper_git_hash": null,
"tokenizer_pad_token": [
"<unk>",
"0"
],
"tokenizer_eos_token": [
"</s>",
"2"
],
"tokenizer_bos_token": [
"<s>",
"1"
],
"eot_token_id": 2,
"max_length": 4096,
"task_hashes": {
"openaimmlu_college_physics": "61aa73bd44d8ef4ba6cb739692c6eb8cabf49e8896a7f725463819ef0dbd0132",
"openaimmlu_astronomy": "4c75961650ca77c7fb21671a45e42b30b2d6737dd89a9dd0f98b5a102a6fd21c",
"openaimmlu_computer_security": "b3b48aa3be2791a75a9678e21c3f7000c0994934e0892e21be48b61eee9022b1",
"openaimmlu_elementary_mathematics": "7ea44fa3e77564b6d8928cb20f739393b20c6df004e164290d5d90ef3d0a8b79",
"openaimmlu_high_school_chemistry": "6d6a118469563d3ce711f5e5ca944e10ed6ea4e52c813217124fc043b7423db6",
"openaimmlu_college_mathematics": "005761dd03c5fd7ac82e8a629717d9fa02e750f7f4913433240ae0886e421bc6",
"openaimmlu_college_chemistry": "0539b9d96465df48c1370ac576a07d6d92f0829fe05cc79bd260ff763a74263d",
"openaimmlu_college_biology": "ac595a195f3fe505c334d8ed12697594cafcbaca1d3247eb8d70a3562f41443e",
"openaimmlu_conceptual_physics": "7e7cb338548eaf777c9eb7cca310fdf726660871c640842032735cc891816586",
"openaimmlu_high_school_statistics": "94f1ab74a8bdbd75041a62e1855c3d15b6ade91a7cc96d274bf57c420c5e7a91",
"openaimmlu_electrical_engineering": "599ce9a4e0938a3911259b3556952c70a5d9ac08df41625179cc73cb45a9797a",
"openaimmlu_high_school_computer_science": "f89803071a28b442ab2f85f9dc6f5c3acc87118b662626c1e164aae4304f45ea",
"openaimmlu_high_school_mathematics": "571309ff8e58fb1d5741d2d95ef005ff09d7e1fc61e75a59fd9bf77d1e4ec25e",
"openaimmlu_abstract_algebra": "18718e53c9eb375b294dc89fddd44e9fec66166611545df741957cb9c3056597",
"openaimmlu_high_school_physics": "b6a0c08c931f22af3809aba7b65315bf82834cf089961e2cada1bc6dab063306",
"openaimmlu_college_computer_science": "614eb77451f839f693631aef6269e65c82e88ad3aa7105f665f4e6187723f986",
"openaimmlu_econometrics": "5b060aa4148ab3c9e801d0591d391b90a21259c436d082120f19a16ce63f7c15",
"openaimmlu_high_school_biology": "fbd661d888bdfd56e1256684914f1b2d2e90f128b26503e0e0d10af6af678e01",
"openaimmlu_nutrition": "c44694a990c0a1187712f3e7d83ee10b5682fde624260c4b78bbd33641647f01",
"openaimmlu_miscellaneous": "a42b3d1263bfa01552f44579362d25e558662731a595c2dec558d8c9ca4d727b",
"openaimmlu_anatomy": "a2158278024b1e9f8867e30434721221f91cbcebaa34c3ca065cc039f6d9ce56",
"openaimmlu_virology": "3fd44c94e0170284d5232b194c5604d338d0ace9cd0ff686d2349b0e7c2e19d6",
"openaimmlu_professional_medicine": "c45c22a09efc77881a194f39b9622414eea01fdd59a4ce6fec12ca0bd542f73b",
"openaimmlu_human_aging": "4216c0274bb171bdb7c8cc2640cd812401e292271f4ee2b95b73b73a48b061c1",
"openaimmlu_clinical_knowledge": "3de23a26358560ceb58b2bd43bf1ca0873f1bde03f92f16048a7fe73ef086f3d",
"openaimmlu_professional_accounting": "b08f816170cc1f742b5d62eca448427a3d57369d56d0db3349d79f0d9da3aec3",
"openaimmlu_high_school_geography": "5f781f776d42c8b641139ad51da36b50da36c450bbec8a01fa33ae25a684133c",
"openaimmlu_professional_psychology": "ee9b7102b9f931cb3c7fab155f7b1828160df589ae8b16844039de7ae3c8d064",
"openaimmlu_high_school_psychology": "f62b828c33fd2ad378bb7aaf081c290210b378f9309aeef1fff01ddc83dd34c6",
"openaimmlu_machine_learning": "4f9232ed92776579ea24eb5fe1ef1275bb2bf8a290f5f004f749cb64b6feee40",
"openaimmlu_medical_genetics": "aece3b6adba4255559594b80438a0e80181e24366ff39b1c91456df945b01f4f",
"openaimmlu_professional_law": "a86f6179dbad6d30286d1b71dafd2799ae6fa219cd7b3a079bb067483bc64b2a",
"openaimmlu_college_medicine": "36232a0c51f93f761adf0529e7004f2f21479517d238b0c9bc538a1138e7482f",
"openaimmlu_formal_logic": "5d7a76ba9f40981d143f6fe780a8269bd525cc54aea3fac3dde297b4d4491413",
"openaimmlu_global_facts": "14d0542f6b985287da88bf4956de680e20754b9d74a009ca463beb66ae081e92",
"openaimmlu_high_school_microeconomics": "51a598169dbd7a3de2e64558fd952a17cd39b49f0c6cb4de95fdb0e5520245c7",
"openaimmlu_high_school_government_and_politics": "7c79983103e230916bf4d730743e92feb7f17e308a2897de764d24f49de93f37",
"openaimmlu_management": "b85920acbd491f4bafeda9de9dc3af4408e63e0d53bfbeade834107dff6c3e3b",
"openaimmlu_security_studies": "de9eccb24ee7d56897728b9bd30c0159f42a6cac86f3d2090504439efcbb2348",
"openaimmlu_business_ethics": "5536730d841c70c256991081bd4d8a9c28aaebcab9ac3cdd36ceb1aad896cfae",
"openaimmlu_sociology": "1fa4ebb60178be200e3b8167e10fec0843964725a6be034e6893ae42d5dd1a3a",
"openaimmlu_high_school_macroeconomics": "938c0435e322f454a5b1f26f1b53870141a9e311bbc95512cf307ecd007e66db",
"openaimmlu_moral_scenarios": "c0158287c824e917d6d76a9d4a4e68a53af20dee7bb7c1d372a759546edef562",
"openaimmlu_public_relations": "545ea7d7b3dbbe04d2c367cd70142c35e1ce585a3c3e4b9d9fa2290d1d25272f",
"openaimmlu_us_foreign_policy": "cddc366ef735093ff1ab6d3660a19d52ae146b9ca18668d8a878be81466cb626",
"openaimmlu_moral_disputes": "2b9fd83448202cb343ad8473f9d34194776e73f9fac0fad093610033039e0152",
"openaimmlu_human_sexuality": "cd4281e8629dd63b57e11fff680c2813bfc156d0807d9a3424670422bb8a8f02",
"openaimmlu_marketing": "85aaada41a32346c0dce6f252b7e5e50a1bce1641cab3ecf6e1590deb8927db4",
"openaimmlu_jurisprudence": "ab9de498411479a47a892895a70b20948854fe8c8177f9851da339a984c534f0",
"openaimmlu_logical_fallacies": "1c809bb030ca1d7256a741cd2f7b3719053d6387df5f89762fca7aa430374461",
"openaimmlu_philosophy": "e6367d4cab84d33e5ba62f20bc52f72d630c4324c0d34628b546cf72a83eb94f",
"openaimmlu_high_school_world_history": "f7e18a11fcc4e11b8c758d3227d7e7fc59157c9bd465ade0c8e4707cb3c76c2a",
"openaimmlu_high_school_european_history": "f6ee95e6dc273ad3d18c110a69772161a9eb250ef81c3202a46228689c5e2071",
"openaimmlu_prehistory": "88d6574515b52d900aab10f1f22d026fa33c8d910a6528acf3dac384d1e82b0a",
"openaimmlu_high_school_us_history": "541952c75bfb8c256d813fdfc4d7707ad25448980fd70d39142ec03a15af9d0d",
"openaimmlu_international_law": "c1acfc8203c4d2f4d5d9245685804c2b7406601dfd8106cc4fac985915559f52",
"openaimmlu_world_religions": "9b68b777a6bc2b05efee57f75e87792c6b14f39464621c16e4c24b024aeb2630"
},
"model_source": "vllm",
"model_name": "/tmp/7b-alpha-v1.27.2.25",
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 4238.00553465,
"end_time": 4722.113520369,
"total_evaluation_time_seconds": "484.10798571899977"
}